
Abaqus Scripting User's Guide

Contents

Trademarks and Legal Notices..4

Abaqus Scripting User's Guide...5

What's New..7

About the Abaqus Scripting Interface..9
Abaqus/CAE and the Abaqus Scripting Interface...10

How does the Abaqus Scripting Interface interact with Abaqus/CAE?...11

Simple examples...14

Creating a part..15

Reading from an output database...20

Summary...25

Using the Abaqus Scripting Interface...26
Introduction to Python...27

Python and Abaqus...28

Python resources..29

Using the Python interpreter..30

Object-oriented basics...31

The basics of Python...32

Programming techniques..48

Further reading..59

Using Python and the Abaqus Scripting Interface...60

Executing scripts...61

Abaqus Scripting Interface documentation style...62

Abaqus Scripting Interface data types...68

Object-oriented programming and the Abaqus Scripting Interface..72

Error handling in the Abaqus Scripting Interface...77

Extending the Abaqus Scripting Interface...82

Using the Abaqus Scripting Interface with Abaqus/CAE...96

The Abaqus object model..97

Copying, deleting, and renaming Abaqus Scripting Interface objects...108

Abaqus/CAE sequences...113

Namespace...115

Specifying what is displayed in the viewport...117

Specifying a region..118

Prompting the user for input..121

Interacting with Abaqus/Standard and Abaqus/Explicit...126

Using Abaqus Scripting Interface commands in your environment file...132

The Abaqus Python Development Environment..134
About the Abaqus Python development environment...135

AbaqusPDE basics...137

Starting the Abaqus Python development environment..138

Managing files in the AbaqusPDE...139

Editing files in the AbaqusPDE..142

Selecting the settings for use with a file..143

i

Contents

The message area and GUI command line interface..146

Using the AbaqusPDE..147

Creating .guiLog files...148

Running a script..149

Using the debugger...150

Using breakpoints..152

Using the AbaqusPDE with plug-ins..153

Using the AbaqusPDE with custom applications...154

Putting it all Together: Abaqus Scripting Interface Examples................................155
Reproducing the cantilever beam tutorial..156

About the cantilever beam example..157

Running the example...158

The cantilever beam example script..159

Generating a customized plot...163

Opening the tutorial output database..164

Opening an output database and displaying a contour plot..165

Printing a contour plot at the end of each step..167

Investigating the skew sensitivity of shell elements...169

Creating the model to analyze...170

Changing the skew angle..173

Using a script to perform a parametric study...175

Editing display preferences and GUI settings...181

Accessing an Output Database...183
Using the Abaqus Scripting Interface to access an output database..184

What do you need to access the output database?..185

How the object model for the output database relates to commands..186

Object model for the output database...187

Executing a script that accesses an output database...194

Reading from an output database...195

Writing to an output database...213

Exception handling in an output database..225

Computations with Abaqus results..226

Improving the efficiency of your scripts...232

Example scripts that access data from an output database..234

Using C++ to access an output database...259

About the C++ interface...260

What do you need to access the output database?..261

Abaqus Scripting Interface documentation style...262

How the object model for the output database relates to commands..268

Object model for the output database...269

Compiling and linking your C++ source code..275

Accessing the C++ interface from an existing application...276

The Abaqus C++ API architecture...281

Utility interface...285

Reading from an output database...289

Writing to an output database...309

Exception handling in an output database..322

Computations with Abaqus results..323

Abaqus Scripting User's Guideii

Contents

Improving the efficiency of your scripts...330

Example programs that access data from an output database...335

iiiAbaqus Scripting User's Guide

Contents

Trademarks and Legal Notices

Trademarks

Abaqus, 3DEXPERIENCE
®
, the 3DS logo, the Compass icon, IFWE, 3DEXCITE, 3DVIA, BIOVIA, CATIA,

CENTRIC PLM, DELMIA, ENOVIA, GEOVIA, MEDIDATA, NETVIBES, OUTSCALE, SIMULIA and
SOLIDWORKS are commercial trademarks or registered trademarks of Dassault Systèmes, a European company
(Societas Europaea) incorporated under French law, and registered with the Versailles trade and companies
registry under number 322 306 440, or its subsidiaries in the United States and/or other countries. All other
trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks
is subject to their express written approval.

Legal Notices

Abaqus and this documentation may be used or reproduced only in accordance with the terms of the software
license agreement signed by the customer, or, absent such agreement, the then current software license agreement
to which the documentation relates.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes or its Affiliates shall not be responsible for the consequences of any errors or omissions that
may appear in this documentation.

© Dassault Systèmes Americas Corp., 2025.

For a full list of the third-party software contained in this release, please go to the Legal Notices in the Abaqus
2025 HTML documentation, which can be obtained from a documentation installation, or in the SIMULIA
Established Products 2025 Program Directory, which is available on www.3ds.com.

Abaqus Scripting User's Guide4

Trademarks and Legal Notices

Abaqus Scripting User's Guide

The Abaqus Scripting User's Guide takes you through the process of understanding the Python programming language
and the Abaqus Scripting Interface so that you can write your own programs. It also describes how you use the Abaqus
Scripting Interface and the C++ application programming interface (API) to access an Abaqus output database.

This guide is a part of the Abaqus
®
 documentation collection, which describes all the capabilities of the Abaqus finite

element analysis technology used in SIMULIA
®
 applications.

The guide consists of the following sections:

An introduction to the Abaqus Scripting Interface

This section provides an overview of the Abaqus Scripting Interface and describes how Abaqus/CAE executes
scripts.

Simple examples

Two simple examples are provided to introduce you to programming with the Abaqus Scripting Interface.

• Creating a part.

• Reading from an output database.

An introduction to Python

This section is intended as a basic introduction to the Python programming language and is not an exhaustive
description of the language. There are several books on the market that describe Python, and these books are
listed as references. Additional resources, such as Python-related sites, are also listed.

Using Python and the Abaqus Scripting Interface

This section describes the Abaqus Scripting Interface in more detail. The documentation style used in the
command reference is explained, and important Abaqus Scripting Interface concepts such as data types and error
handling are introduced.

Using the Abaqus Scripting Interface with Abaqus/CAE

This section describes how you use the Abaqus Scripting Interface to control Abaqus/CAE models and analysis
jobs. The Abaqus object model is introduced, along with techniques for specifying a region and reading messages
from an analysis product (Abaqus/Standard or Abaqus/Explicit). You can skip this section of the guide if you
are not working with Abaqus/CAE.

Example scripts

This section provides a set of example scripts that lead you through the cantilever beam tutorial found in Creating

and Analyzing a Simple Model in Abaqus/CAE. Additional examples are provided that read from an output
database, display a contour plot, and print a contour plot from each step of the analysis. The final example
illustrates how you can read from a model database created by Abaqus/CAE, parameterize the model, submit a
set of analysis jobs, and generate results from the resulting output databases.

5

Abaqus Scripting User's Guide

Using the Abaqus Scripting Interface to access an output database

When you execute an analysis job, Abaqus/Standard and Abaqus/Explicit store the results of the analysis in an
output database (.odb file) that can be viewed in the Visualization module of Abaqus/CAE or in Abaqus/Viewer.
This section describes how you use the Abaqus Scripting Interface to access the data stored in an output database.

You can do the following with the Abaqus Scripting Interface:

• Read model data describing the geometry of the parts and the assembly; for example, nodal coordinates,
element connectivity, and element type and shape.

• Read model data describing the sections and materials and where they are used in an assembly.

• Read field output data from selected steps, frames, and regions.

• Read history output data.

• Operate on field output and history output data.

• Write model data, field output data, and history data to an existing output database or to a new output database.

Using C++ to access an output database

This section describes how you use the C++ language to access an application programming interface (API) to
the data stored in an output database. The functionality of the C++ API is identical to the Abaqus Scripting
Interface API; however, the interactive nature of the Abaqus Scripting Interface and its integration with
Abaqus/CAE makes it easier to use and program. The C++ interface is aimed at experienced C++ programmers
who want to bypass the Abaqus Scripting Interface for performance considerations. The C++ API offers faster
access to the output database, although this is a consideration only if you need to access large amounts of data.

Abaqus Scripting User's Guide6

Abaqus Scripting User's Guide

What's New

This page describes recent changes in Abaqus Scripting.

2025 FD01

PDF Guides Available

You can download PDF versions of the Abaqus guides from each guide overview.
Benefits: You can easily access the PDF versions of the guides.

In earlier releases, PDF versions of the guides were updated only for the GA (General Availability) release and
could be downloaded from the Dassault Systèmes Knowledge Base. As of 2025 FD01, the PDF guides will be
updated with each release of the HTML versions of the guides.

For more information, see Abaqus Scripting User's Guide.

2024 GA

Abaqus Python Upgrade to Version 3.10.5

Abaqus Python is updated to Version 3.10.5.

Benefits: Customers and partners can leverage the latest functionality provided in Python 3.

AbaqusPython has been updated from Python version 2.7.15 to Python version 3.10.5.

Python 3 introduces a number of changes that break backward-compatibility with existing Python 2 code. As a
result, scripts originally written using Python 2 syntax might not run without modification in Python 3. However,
in most cases it is possible to modify your scripts so that they will run in both Python 2.7 and Python 3.

The following Abaqus functionality is impacted:

• Abaqus/CAE and Abaqus/Viewer scripting

• Abaqus/CAE and Abaqus/Viewer plugins

• The abaqus_v6.env environment file (see Using the Abaqus environment files)

• Custom applications (see Creating a customized application)

• Standalone Abaqus Python scripts; for example, scripts run with abaqus python myscript.py (see
Python Execution)

• *PARAMETER (see Parametric Modeling)

• Parametric studies—.psf files (see Parametric Studies)

• Batch scheduling scripts (Dassault Systèmes Knowledge Base, https://support.3ds.com/knowledge-base)

A conversion utility is provided to assist with converting Python 2 syntax to Python 3. While it will automatically
convert many common syntax changes, not all Python 2 syntax can be converted automatically; therefore, some
manual conversion might be required to ensure that Python scripts run properly with the new version. You can
invoke the conversion utiility from the command line using the command

abaqus python -m abqPy2to3 <script/directory>

The utility writes a log file and saves the original versions of the files on which it operates. If you provide a
directory to the utility, it recursively traverses through that directory and subdirectories looking for *.py files.

7

What's New

You can include -future False on the command line if you are not worried about maintaining Python 2.7
forward compatibility. You can also access the conversion utility as part of the script upgrade plug-in utility in
Abaqus/CAE (available from Plug-Ins > Abaqus > Upgrade Scripts). It is run if you upgrade scripts to 2024.

Additional information related to converting Python code for Abaqus is available in the SIMULIA Community
at go.3ds.com/AbaqusPython.

Abaqus Scripting User's Guide8

What's New

About the Abaqus Scripting Interface

The Abaqus Scripting Interface is an application programming interface (API) to the models and data used by
Abaqus.
The Abaqus Scripting Interface is an extension of the Python object-oriented programming language; Abaqus
Scripting Interface scripts are Python scripts. You can use the Abaqus Scripting Interface to do the following:

• Create and modify the components of an Abaqus model, such as parts, materials, loads, and steps.

• Create, modify, and submit Abaqus analysis jobs.

• Read from and write to an Abaqus output database.

• View the results of an analysis.

You use the Abaqus Scripting Interface to access the functionality of Abaqus/CAE from scripts (or programs).
(The Visualization module of Abaqus/CAE is also licensed separately as Abaqus/Viewer; therefore, the Abaqus
Scripting Interface can also be used to access the functionality of Abaqus/Viewer.) Because the Abaqus Scripting
Interface is a customized extension of standard Python, further extension of Abaqus base types to create
user-defined classes is not allowed.

This section provides an introduction to the Abaqus Scripting Interface.

In this section:

• Abaqus/CAE and the Abaqus Scripting Interface

• How does the Abaqus Scripting Interface interact with Abaqus/CAE?

• Simple examples

9

About the Abaqus Scripting Interface

Abaqus/CAE and the Abaqus Scripting Interface

When you use the Abaqus/CAE graphical user interface (GUI) to create a model and to visualize the results, commands
are issued internally by Abaqus/CAE after every operation. These commands reflect the geometry you created along
with the options and settings you selected from each dialog box. The GUI generates commands in an object-oriented
programming language called Python. The commands issued by the GUI are sent to the Abaqus/CAE kernel. The
kernel interprets the commands and uses the options and settings to create an internal representation of your model.
The kernel is the brains behind Abaqus/CAE. The GUI is the interface between the user and the kernel.

The Abaqus Scripting Interface allows you to bypass the Abaqus/CAE GUI and communicate directly with the kernel.
A file containing Abaqus Scripting Interface commands is called a script. You can use scripts to do the following:

• To automate repetitive tasks. For example, you can create a script that executes when a user starts an Abaqus/CAE
session. Such a script might be used to generate a library of standard materials. As a result, when the user enters
the Property module, these materials will be available. Similarly, the script might be used to create remote queues
for running analysis jobs, and these queues will be available in the Job module.

• To perform a parametric study. For example, you can create a script that incrementally modifies the geometry of
a part and analyzes the resulting model. The same script can read the resulting output databases, display the results,
and generate annotated hard copies from each analysis.

• Create and modify the model databases and models that are created interactively when you work with Abaqus/CAE.
The Abaqus Scripting Interface is an application programming interface (API) to your model databases and models.
For a discussion of model databases and models, see What is an Abaqus/CAE model database? and What is an

Abaqus/CAE model?.

• Access the data in an output database. For example, you may wish to do your own postprocessing of analysis results.
You can write your own data to an output database and use the Visualization module of Abaqus/CAE to view its
contents.

The Abaqus Scripting Interface is an extension of the popular object-oriented language called Python. Any discussion
of the Abaqus Scripting Interface applies equally to Python in general, and the Abaqus Scripting Interface uses the
syntax and operators required by Python.

Abaqus Scripting User's Guide10

Abaqus/CAE and the Abaqus Scripting Interface

How does the Abaqus Scripting Interface interact with Abaqus/CAE?

Figure 1 illustrates how Abaqus Scripting Interface commands interact with the Abaqus/CAE kernel.

GUI

command
line

interface
(CLI)

script

Python
interpreter

replay
files

Abaqus/CAE
kernel

commands

input file

Abaqus/Standard
Abaqus/Explicit

output database

Abaqus/CAE

Abaqus/Design
Abaqus/CFD

Figure 1: Abaqus Scripting Interface commands and Abaqus/CAE.

Abaqus Scripting Interface commands can be issued to the Abaqus/CAE kernel from one of the following:

• The graphical user interface (GUI). For example, when you click OK or Apply in a dialog box, the GUI generates
a command based on your options and settings in the dialog box. You can use the Macro Manager to record a
sequence of the generated Abaqus Scripting Interface commands in a macro file. For more information, see Creating

and running a macro.

• Click in the lower left corner of the main window to display the command line interface (CLI). You can type
a single command or paste in a sequence of commands from another window; the command is executed when you
press [Enter]. You can type any Python command into the command line; for example, you can use the command
line as a simple calculator.

Note:

When you are using Abaqus/CAE, errors and messages are posted into the message area. Click in the
lower left corner of the main window to display the message area.

• If you have more than a few commands to execute or if you are repeatedly executing the same commands, it may
be more convenient to store the set of statements in a file called a script. A script contains a sequence of Python
statements stored in plain ASCII format. For example, you might create a script that opens an output database,

11

How does the Abaqus Scripting Interface interact with Abaqus/CAE?

displays a contour plot of a selected variable, customizes the legend of the contour plot, and prints the resulting
image on a local PostScript printer. In addition, scripts are useful for starting Abaqus/CAE in a predetermined state.
For example, you can define a standard configuration for printing, create remote queues, and define a set of standard
materials and their properties.

You can use one of the following methods to run a script:

Running a script when you start Abaqus/CAE

You can run a script when you start an Abaqus/CAE session by typing the following command:

abaqus cae script=myscript.py

where myscript.py is the name of the file containing the script. The equivalent command for
Abaqus/Viewer is

abaqus viewer script=myscript.py

Arguments can be passed into the script by entering -- on the command line, followed by the arguments
separated by one or more spaces. These arguments will be ignored by the Abaqus/CAE execution procedure,
but they will be accessible within the script. For more information, see Abaqus/CAE Execution and
Abaqus/Viewer Execution.

Running a script without the Abaqus/CAE GUI

You can run a script without the Abaqus/CAE GUI by typing the following command:

abaqus cae noGUI=myscript.py

where myscript.py is the name of the file containing the script. The equivalent command for
Abaqus/Viewer is

abaqus viewer noGUI=myscript.py

The Abaqus/CAE kernel is started without the GUI. Running a script without the Abaqus/CAE GUI is useful
for automating pre- or postanalysis processing tasks without the added expense of running a display. When
the script finishes running, the Abaqus/CAE kernel terminates. If you execute a script without the GUI, the
script cannot interact with the user, monitor jobs, or generate animations. When running a script without the
user interface, jobs are always run interactively. If a job queue is specified, it will be ignored.

Running a script from the startup screen

When you start an Abaqus/CAE session, Abaqus displays the startup screen. You can run a script from the
startup screen by clicking Run Script. Abaqus displays the Run Script dialog box, and you select the file
containing the script.

Running a script from the File menu

You can run a script by selecting File->Run Script from the main menu bar. Abaqus displays the Run Script

dialog box, and you select the file containing the script.

Running a script from the command line interface

You can run a script from the command line interface (CLI) by typing the following command:

execfile('myscript.py')

where myscript.py is the name of the file containing the script and the file in this example is in the current
directory. Figure 2 shows an example script being run from the command line interface.

Abaqus Scripting User's Guide12

How does the Abaqus Scripting Interface interact with Abaqus/CAE?

Figure 2: Scripts can be run from the command line interface.

Click in the lower left corner of the main window to switch from the message area to the command line
interface.

13Abaqus Scripting User's Guide

How does the Abaqus Scripting Interface interact with Abaqus/CAE?

Simple examples

Programming with the Abaqus Scripting Interface is straightforward and logical.
This section includes two simple Abaqus Scripting Interface scripts to illustrate how easy it is to write your own
programs. You are not expected to understand every line of the examples; the terminology and the syntax will
become clearer as you read the detailed explanations in the following chapters. This section also includes a
description of some of the principles behind programming with Python and the Abaqus Scripting Interface.

In this section:

• Creating a part

• Reading from an output database

• Summary

Abaqus Scripting User's Guide14

Creating a part

This section includes an example that shows how you can use an Abaqus/CAE script to replicate the functionality
of Abaqus/CAE.

In this section:

• The example script

• How does the script work?

15

The example script

This example shows how you can use an Abaqus/CAE script to replicate the functionality of Abaqus/CAE.

The script does the following:

• Creates a new model in the model database.

• Creates a two-dimensional sketch.

• Creates a three-dimensional, deformable part.

• Extrudes the two-dimensional sketch to create the first geometric feature of the part.

• Creates a new viewport.

• Displays a shaded image of the new part in the new viewport.

The new viewport and the shaded part are shown in Figure 1.

Figure 1:The example creates a new viewport and a part.

The example scripts from this guide can be copied to the user's working directory by using the Abaqusfetch utility:

abaqus fetch job=scriptName

where scriptName.py is the name of the script (see Fetching Sample Input Files). Use the following command to
retrieve the script for this example:

abaqus fetch job=modelAExample

Note: Abaqus does not install the sample scripts by default during the installation procedure. As a result, if the
Abaqus fetch utility fails to find the sample script, the script may be missing from your Abaqus installation.
You must rerun the installation procedure and request Abaqus sample problems from the list of items
to install.

To run the program, do the following:

1. Start Abaqus/CAE by typing abaqus cae.

2. From the startup screen, select Run Script.

3. From the Run Script dialog box that appears, select modelAExample.py.

Abaqus Scripting User's Guide16

The example script

4. Click OK to run the script.

Note: If Abaqus/CAE is already running, you can run the script by selecting File->Run Script from the main
menu bar.

The example follows:

"""
modelAExample.py

A simple example: Creating a part.
"""

from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True,
 reportDeprecated=False)

import sketch
import part

myModel = mdb.Model(name='Model A')

mySketch = myModel.ConstrainedSketch(name='Sketch A',
 sheetSize=200.0)

xyCoordsInner = ((-5 , 20), (5, 20), (15, 0),
 (-15, 0), (-5, 20))

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
 (30, -30), (20, -10), (-20, -10),
 (-30, -30), (-40, -30), (-10, 30))

for i in range(len(xyCoordsInner)-1):
 mySketch.Line(point1=xyCoordsInner[i],
 point2=xyCoordsInner[i+1])

for i in range(len(xyCoordsOuter)-1):
 mySketch.Line(point1=xyCoordsOuter[i],
 point2=xyCoordsOuter[i+1])

myPart = myModel.Part(name='Part A', dimensionality=THREE_D,
 type=DEFORMABLE_BODY)

myPart.BaseSolidExtrude(sketch=mySketch, depth=20.0)

myViewport = session.Viewport(name='Viewport for Model A',
 origin=(10, 10), width=150, height=100)

myViewport.setValues(displayedObject=myPart)

myViewport.partDisplay.setValues(renderStyle=SHADED)

17Abaqus Scripting User's Guide

The example script

How does the script work?

This section explains each portion of the example script.

from abaqus import *

This statement makes the basic Abaqus objects accessible to the script. It also provides access to a default model
database using the variable named mdb. The statement, from abaqusConstants import *, makes the Symbolic
Constants defined by the Abaqus Scripting Interface available to the script.

import sketch
import part

These statements provide access to the objects related to sketches and parts. sketch and part are called Python
modules.

The next statement in the script is shown in Figure 1. You can read this statement from right to left as follows:

1. Create a new model named Model A.

2. Store the new model in the model database mdb.

3. Assign the new model to a variable called myModel.

myModel = mdb.Model(name='Model A')

1. Create a new model

 named 'Model A'

2. Store the new model in the

 model database mdb

3. Assign a variable

 to the new model

Figure 1: Creating a new model.

mySketch = myModel.ConstrainedSketch(name='Sketch A', sheetSize=200.0)

This statement creates a new sketch object named Sketch A in myModel. The variable mySketch is assigned to
the new sketch. The sketch will be placed on a sheet 200 units square. Note the following:

• A command that creates something (an “object” in object-oriented programming terms) is called a constructor and
starts with an uppercase character. You have seen the Model and Sketch commands that create Model objects
and Sketch objects, respectively.

• The command uses the variable myModel that we created in the previous statement. Using variables with meaningful
names in a script makes the script easier to read and understand.

xyCoordsInner = ((-5 , 20), (5, 20), (15, 0),
 (-15, 0), (-5, 20))

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
 (30, -30), (20, -10), (-20, -10),
 (-30, -30), (-40, -30), (-10, 30))

These two statements define the X- and Y-coordinates of the vertices that form the inner and outer profile of the letter
“A.” The variable xyCoordsInner refers to the vertices of the inner profile, and the variable xyCoordsOuter
refers to the vertices of the outer profile.

for i in range(len(xyCoordsInner)-1):
 mySketch.Line(point1=xyCoordsInner[i],
 point2=xyCoordsInner[i+1])

Abaqus Scripting User's Guide18

How does the script work?

This loop creates the inner profile of the letter “A” in mySketch. Four lines are created using the X- and Y-coordinates
of the vertices in xyCoordsInner to define the beginning point and the end point of each line. Note the following:

• Python uses only indentation to signify the start and the end of a loop. Python does not use the brackets {} of C
and C++.

• The len() function returns the number of coordinate pairs in xyCoordsInner—five in our example.

• The range() function returns a sequence of integers. In Python, as in C and C++, the index of an array starts at
zero. In our example range(4) returns 0,1,2,3. For each iteration of the loop in the example the variable i
is assigned to the next value in the sequence of integers.

Similarly, a second loop creates the outer profile of the “A” character.

myPart = myModel.Part(name='Part A',
 dimensionality=THREE_D, type=DEFORMABLE_BODY)

This statement creates a three-dimensional, deformable part named Part A in myModel. The new part is assigned
to the variable myPart.

myPart.BaseSolidExtrude(sketch=mySketch, depth=20.0)

This statement creates a base solid extrude feature in myPart by extruding mySketch through a depth of 20.0.

myViewport = session.Viewport(name='Viewport for Model A',
 origin=(20,20), width=150, height=100)

This statement creates a new viewport named Viewport for Model A in session. The new viewport is assigned
to the variable myViewport. The origin of the viewport is at (20, 20), and it has a width of 150 and a height of 100.

myViewport.setValues(displayedObject=myPart)

This statement tells Abaqus to display the new part, myPart, in the new viewport, myViewport.

myViewport.partDisplayOptions.setValues(renderStyle=SHADED)

This statement sets the render style of the part display options in myViewport to shaded. As a result, myPart appears
in the shaded render style.

19Abaqus Scripting User's Guide

How does the script work?

Reading from an output database

This section includes an example that shows how you can use the Abaqus Scripting Interface to read an output
database, manipulate the data, and display the results using the Visualization module in Abaqus/CAE.

In this section:

• The example script

• How does the script work?

Abaqus Scripting User's Guide20

The example script

This example shows how you can use the Abaqus Scripting Interface to read an output database, manipulate the data,
and display the results using the Visualization module in Abaqus/CAE.
The Abaqus Scripting Interface allows you to display the data even though you have not written it back to an output
database.

The script does the following:

• Opens the tutorial output database.

• Creates variables that refer to the first and second steps in the output database.

• Creates variables that refer to the last frame of the first and second steps.

• Creates variables that refer to the displacement field output in the last frame of the first and second steps.

• Creates variables that refer to the stress field output in the last frame of the first and second steps.

• Subtracts the displacement field output from the two steps and puts the result in a variable called
deltaDisplacement.

• Subtracts the stress field output from the two steps and puts the result in a variable called deltaStress.

• Selects deltaDisplacement as the default deformed variable.

• Selects the von Mises invariant of deltaStress as the default field output variable.

• Plots a contour plot of the result.

The resulting contour plot is shown in Figure 1.

(Avg: 75%)

S − S, Mises

+7.711e−05
+3.414e−03
+6.750e−03
+1.009e−02
+1.342e−02
+1.676e−02
+2.010e−02
+2.343e−02
+2.677e−02
+3.011e−02
+3.344e−02
+3.678e−02
+4.012e−02

Step: Session Step, Step for Viewer non−persistent fields
Session Frame
Primary Var: S − S, Mises
Deformed Var: U − U Deformation Scale Factor: +1.000e+00

Figure 1:The resulting contour plot.

Use the following commands to retrieve the script and the output database that is read by the script:

abaqus fetch job=odbExample
abaqus fetch job=viewer_tutorial

21

The example script

The example follows:

"""
odbExample.py

Script to open an output database, superimpose variables
from the last frame of different steps, and display a contour
plot of the result.
"""

from abaqus import *
from abaqusConstants import *
import visualization

myViewport = session.Viewport(name='Superposition example',
 origin=(10, 10), width=150, height=100)

Open the tutorial output database.

myOdb = visualization.openOdb(path='viewer_tutorial.odb')

Associate the output database with the viewport.

myViewport.setValues(displayedObject=myOdb)

Create variables that refer to the first two steps.

firstStep = myOdb.steps['Step-1']
secondStep = myOdb.steps['Step-2']

Read displacement and stress data from the last frame
of the first two steps.

frame1 = firstStep.frames[-1]
frame2 = secondStep.frames[-1]

displacement1 = frame1.fieldOutputs['U']
displacement2 = frame2.fieldOutputs['U']

stress1 = frame1.fieldOutputs['S']
stress2 = frame2.fieldOutputs['S']

Find the added displacement and stress caused by
the loading in the second step.

deltaDisplacement = displacement2 - displacement1
deltaStress = stress2 - stress1

Create a Mises stress contour plot of the result.

myViewport.odbDisplay.setDeformedVariable(deltaDisplacement)

myViewport.odbDisplay.setPrimaryVariable(field=deltaStress,
 outputPosition=INTEGRATION_POINT,
 refinement=(INVARIANT, 'Mises'))

myViewport.odbDisplay.display.setValues(plotState=(
 CONTOURS_ON_DEF,))

Abaqus Scripting User's Guide22

The example script

How does the script work?

This section explains each portion of the example script.

from abaqus import *
from abaqusConstants import *

These statements make the basic Abaqus objects accessible to the script as well as all the Symbolic Constants defined
in the Abaqus Scripting Interface.

import visualization

This statement provides access to the commands that replicate the functionality of the Visualization module in
Abaqus/CAE (Abaqus/Viewer).

myViewport = session.Viewport(name='Superposition example')

This statement creates a new viewport named Superposition example in the session. The new viewport is
assigned to the variable myViewport. The origin and the size of the viewport assume the default values.

odbPath = 'viewer_tutorial.odb'

This statement creates a path to the tutorial output database.

myOdb = session.openOdb(path=odbPath)

This statement uses the path variable odbPath to open the output database and to assign it to the variable myOdb.

myViewport.setValues(displayedObject=myOdb)

This statement displays the default plot of the output database in the viewport.

firstStep = myOdb.steps['Step-1']
secondStep = myOdb.steps['Step-2']

These statements assign the first and second steps in the output database to the variables firstStep and secondStep.

frame1 = firstStep.frames[-1]
frame2 = secondStep.frames[-1]

These statements assign the last frame of the first and second steps to the variables frame1 and frame2. In Python
an index of 0 refers to the first item in a sequence. An index of −1 refers to the last item in a sequence.

displacement1 = frame1.fieldOutputs['U']
displacement2 = frame2.fieldOutputs['U']

These statements assign the displacement field output in the last frame of the first and second steps to the variables
displacement1 and displacement2.

stress1 = frame1.fieldOutputs['S']
stress2 = frame2.fieldOutputs['S']

Similarly, these statements assign the stress field output in the last frame of the first and second steps to the variables
stress1 and stress2.

deltaDisplacement = displacement2 - displacement1

This statement subtracts the displacement field output from the last frame of the two steps and puts the resulting field
output into a new variable deltaDisplacement.

deltaStress = stress2 - stress1

Similarly, this statement subtracts the stress field output and puts the result in the variable deltaStress.

myViewport.odbDisplay.setDeformedVariable(deltaDisplacement)

23

How does the script work?

This statement uses deltaDisplacement, the displacement field output variable that we created earlier, to set the
deformed variable. This is the variable that Abaqus will use to display the shape of the deformed model.

myViewport.odbDisplay.setPrimaryVariable(field=deltaStress,
 outputPosition=INTEGRATION_POINT,
 refinement=(INVARIANT, 'Mises'))

This statement uses deltaStress, our stress field output variable, to set the primary variable. This is the variable
that Abaqus will display in a contour or symbol plot.

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

The final statement sets the plot state to display a contour plot on the deformed model shape.

Abaqus Scripting User's Guide24

How does the script work?

Summary

The examples illustrate how a script can operate on a model in a model database or on the data stored in an output
database. The details of the commands in the examples are described in later sections; however, you should note the
following:

• You can run a script from the Abaqus/CAE startup screen when you start a session. After a session has started, you
can run a script from the File->Run Script menu or from the command line interface.

• A script is a sequence of commands stored in ASCII format and can be edited with a standard text editor.

• A set of example scripts are provided with Abaqus. Use the abaqus fetch command to retrieve a script and
any associated files.

• You must use the import statement to make the required set of Abaqus Scripting Interface commands available.
For example, the statement import part provides the commands that create and operate on parts.

• A command that creates something (an “object” in object-oriented programming terms) is called a constructor and
starts with an uppercase character. For example, the following statement uses the Model constructor to create a
model object.

myModel = mdb.Model(name='Model A')

The model object created is

mdb.models['Model A']

• You can use a variable to refer to an object. Variables make your scripts easier to read and understand. myModel
refers to a model object in the previous example.

• A Python script can include a loop. The start and end of a loop is controlled by indentation in the script.

• Python includes a set of built-in functions. For example, the len() function returns the length of a sequence.

• You can use commands to replicate any operation that can be performed interactively when you are working with
Abaqus/CAE; for example, creating a viewport, displaying a contour plot, and setting the step and the frame to
display.

25

Summary

Using the Abaqus Scripting Interface

This section provides an introduction to the Python programming language and a discussion of how you can
combine Python statements and the Abaqus Scripting Interface to create your own scripts.

In this section:

• Introduction to Python

• Using Python and the Abaqus Scripting Interface

• Using the Abaqus Scripting Interface with Abaqus/CAE

Abaqus Scripting User's Guide26

Using the Abaqus Scripting Interface

Introduction to Python

This section provides a basic introduction to the Python programming language. You are encouraged to try the
examples and to experiment with Python statements.

The Python language is used throughout Abaqus, not only in the Abaqus Scripting Interface. Python is also used
by Abaqus/Design to perform parametric studies and in the Abaqus/Standard, Abaqus/Explicit, and Abaqus/CAE
environment file. For more information, see Parametric Studies and Environment File Settings.

In this section:

• Python and Abaqus

• Python resources

• Using the Python interpreter

• Object-oriented basics

• The basics of Python

• Programming techniques

• Further reading

27

Python and Abaqus

Python is the standard programming language for Abaqus products and is used in several ways.

• The Abaqus environment file uses Python statements.

• The parameter definitions on the data lines of the *PARAMETER option in the Abaqus input file are Python
statements.

• The parametric study capability of Abaqus requires the user to write and to execute a Python scripting (.psf) file.

• Abaqus/CAE records its commands as a Python script in the replay (.rpy) file.

• You can execute Abaqus/CAE tasks directly using a Python script. You can execute a script from Abaqus/CAE
using the following:

- File->Run Script from the main menu bar.

- The Macro Manager.

- The command line interface (CLI).

• You can access the output database (.odb) using a Python script.

Abaqus Scripting User's Guide28

Python and Abaqus

Python resources

Python is an object-oriented programming language that is widely used in the software industry. A number of resources
are available to help you learn more about the Python programming language.

Python websites

The official Python website (http://www.python.org) contains a wealth of information on the Python programming
language and the Python community. For new Python programmers the website contains links to:

• General descriptions of the Python language.

• Comparisons between Python and other programming languages.

• An introduction to Python.

• Introductory tutorials.

The website also contains a reference library of Python functions to which you will need to refer.

Python books

• Altom, Tim, Programming With Python, Prima Publishing, ISBN: 0761523340.

• Beazley, David, Python Essential Reference (2nd Edition), New Riders Publishing, ISBN: 0735710910.

• Brown, Martin, Python: The Complete Reference, McGraw-Hill, ISBN: 07212718X.

• Brown, Martin, Python Annotated Archives, McGraw-Hill, ISBN: 072121041.

• Chun, Wesley J., Core Python Programming, Prentice Hall, ISBN: 130260363.

• Deitel, Harvey M., Python: How to Program, Prentice Hall, ISBN: 130923613.

• Gauld, Alan, Learn To Program Using Python, Addison-Wesley, ISBN: 201709384.

• Harms, Daryl D., and Kenneth McDonald, Quick Python Book, Manning Publications Company, ISBN:
884777740.

• Lie Hetland, Magnus, Practical Python, APress, ISBN: 1590590066.

• Lutz, Mark, Programming Python, O'Reilly & Associates, ISBN: 1565921976.

• Lutz, Mark, and David Ascher, Learning Python, Second Edition, O'Reilly & Associates, ISBN: 0596002815.

• Lutz, Mark, and Gigi Estabrook, Python: Pocket Reference, O'Reilly & Associates, ISBN: 1565925009.

• Martelli, Alex, Python in a Nutshell, O'Reilly & Associates, ISBN: 0596001886.

• Martelli, Alex, and David Ascher, Python Cookbook, O'Reilly & Associates, ISBN: 0596001673.

• Van Laningham, Ivan, Sams Teach Yourself Python in 24 Hours, Sams Publishing, ISBN: 0672317354.

The books Python Essential Reference and Learning Python are recommended reading.

Python newsgroups

Discussions of Python programming can be found at:

• comp.lang.python

• comp.lang.python.announce

29

Python resources

Using the Python interpreter

Python is an interpreted language. This means you can type a statement and view the results without having to compile
and link your scripts. Experimenting with Python statements is quick and easy. You are encouraged to try the examples
in these tutorials on your workstation, and you should feel free to experiment with your own variations. To run the
Python interpreter, do one of the following:

• If you have Abaqus installed on your Linux or Windows workstation, type abaqus python at the system prompt.
Python enters its interpretive mode and displays the >>> prompt.

You can enter Python statements at the >>> prompt. To see the value of a variable or expression, type the variable
name or expression at the Python prompt. To exit the Python interpreter, type [Ctrl] + D on Linux systems or [Ctrl]

+ Z[Enter] on Windows systems.

You can also use Python to run a script directly by typing abaqus pythonscriptname.py at the system prompt.
Abaqus will run the script through the Python interpreter and return you to the system prompt. For an example of
running a Python script using Abaqus, see Creating functions.

• You can also use the Python interpreter provided in the command line interface by Abaqus/CAE. The command
line is at the bottom of the Abaqus/CAE window and is shared with the message area. Abaqus/CAE displays the
Python >>> prompt in the command line interface.

Click in the lower left corner of the main window to display the command line interface. You may want to
drag the handle at the top of the command line interface to increase the number of lines displayed.

If Abaqus/CAE displays new messages while you are using the command line interface, the message area tab turns
red.

Abaqus Scripting User's Guide30

Using the Python interpreter

Object-oriented basics

You need to understand some of the fundamentals of object-oriented programming to understand the terms used in
this guide. The following is a brief introduction to the basic concepts behind object-oriented programming.

Traditional procedural languages, such as Fortran and C, are based around functions or subroutines that perform actions.
A typical example is a subroutine that calculates the geometric center of a planar part given the coordinates of each
vertex.

In contrast, object-oriented programming languages, such as Python and C++, are based around objects. An object
encapsulates some data and functions that are used to manipulate those data. The data encapsulated by an object are
called the members of the object. The functions that manipulate the data are called methods.

An object can be modeled from a real-world object, such as a tire; or an object can be modeled from something more
abstract, such as an array of nodes. For example, the data (or members) encapsulated by a tire object are its diameter,
width, aspect ratio, and price. The functions or methods encapsulated by the tire object calculate how the tire deforms
under load and how it wears during use. Members and methods can be shared by more than one type of object; for
example, a shock absorber has a price member and a deformation method.

Classes are an important concept in object-oriented programming. Classes are defined by the programmer, and a class
defines members and the methods that operate on those members. An object is an instance of a class. An object inherits
the members and methods of the class from which it was instanced. You should read a Python text book for a thorough
discussion of classes, abstract base classes, and inheritance.

31

Object-oriented basics

The basics of Python

The following sections introduce you to the basics of the Python language.

In this section:

• Variable names and assignment

• Python data types

• Determining the type of a variable

• Sequences

• Sequence operations

• Python None

• Continuation lines and comments

• Printing variables using formatted output

• Control blocks

Abaqus Scripting User's Guide32

Variable names and assignment

The expression

>>> myName = 'Einstein'

creates a variable called myName that refers to a String object.

To see the value of a variable or expression, simply type the variable name or the expression at the Python prompt,
and press [Enter]. For example,

>>> myName = 'Einstein'
>>> myName
'Einstein'
>>> 3.0 / 4.0
0.75
>>> x = 3.0 / 4.0
>>> x
0.75

Python creates a variable when you assign a value to it. Python provides several forms of the assignment statement;
for example,

>>> myName = 'Einstein'
>>> myName, yourName = 'Einstein', 'Newton'
>>> myName = yourName = 'Einstein'

The second line assigns the string 'Einstein' to the variable myName and assigns the string 'Newton' to the
variable yourName. The third line assigns the string 'Einstein' to both myName and yourName.

The following naming rules apply:

• Variable names must start with a letter or an underscore character and can contain any number of letters, digits, or
underscores. load_3 and _frictionStep are legal variable names; 3load, load_3$, and $frictionStep
are not legal names. There is no limit on the length of a variable name.

• Some words are reserved and cannot be used to name a variable; for example, print, while, return, and
class.

• Python is case sensitive. A variable named Load is different from a variable named load.

When you assign a variable in a Python program, the variable refers to a Python object, but the variable is not an object
itself. For example, the expression numSpokes=3 creates a variable that refers to an integer object; however,
numSpokes is not an object. You can change the object to which a variable refers. numSpokes can refer to a real
number on one line, an integer on the next line, and a viewport on the next line.

The first example script in Creating a part created a model using the following statement:

myModel = mdb.Model(name='Model A')

The constructor mdb.Model(name='Model A') creates an instance of a model, and this instance is a Python
object. The object created is mdb.models['Model A'], and the variable myModel refers to this object.

An object always has a type. In our example the type of mdb.models['Model A'] is Model. An object's type
cannot be changed. The type defines the data encapsulated by an object—its members—and the functions that can
manipulate those data—its methods. Unlike most programming languages, you do not need to declare the type of a
variable before you use it. Python determines the type when the assignment statement is executed. The Abaqus Scripting
Interface uses the term “object” to refer to a specific Abaqus type as well as to an instance of that type; for example,
a Model object refers to a Model type and to an instance of a Model type.

33

Variable names and assignment

Python data types

Python includes the following built-in data types:

Integer

To create variables called “i” and “j” that refer to integer objects, type the following at the Python prompt:

>>> i = 20
>>> j = 64

An integer is based on a C long and can be compared to a Fortran integer*4 or *8. For extremely large integer
values, you should declare a long integer. The size of a long integer is essentially unlimited. The “L” at the end
of the number indicates that it is a long integer.

>>> nodes = 2000000L
>>> bigNumber = 120L**21

Use int(n) to convert a variable to an integer; use long(n) to convert a variable to a long integer.

>>> load = 279.86
>>> iLoad = int(load)
>>> iLoad
279

>>> a = 2
>>> b = 64
>>> bigNumber = long(a)**b
>>> print('bigNumber = ', bigNumber)
bigNumber = 18446744073709551616

Note:

All Abaqus Scripting Interface object types begin with an uppercase character; for example, a Part or a
Viewport. An integer is another kind of object and follows the same convention. The Abaqus Scripting
Interface refers to an integer object as an “Int.” Similarly, the Abaqus Scripting Interface refers to a
floating-point object as a “Float.”

Float

Floats represent floating-point numbers or real numbers. You can use exponential notation for floats.

>>> pi = 22.0/7.0
>>> r = 2.345e-6
>>> area = pi * r * r
>>> print('Area = ', area)
Area = 1.728265e-11

A float is based on a C double and can be compared to a Fortran real*8. Use float(n) to convert a variable
to a float.

Complex

Complex numbers use the “j” notation to indicate the imaginary part of the number. Python provides methods
to manipulate complex numbers. The conjugate method calculates the conjugate of a complex number.

>>> a = 2 + 4j
>>> a.conjugate()
(2-4j)

Abaqus Scripting User's Guide34

Python data types

A complex number has two members, the real member and the imaginary member.

>>> a = 2 + 4j
>>> a.real
2.0
>>> a.imag
4.0

Python provides complex math functions to operate on complex variables. You need to import the cmath module
to use the complex square root function.

>>> import cmath
>>> y = 3 + 4j
>>> print cmath.sqrt(y)
(2+1j)

Remember, functions of a type are called methods; data of a type are called members. In our example conjugate
is a method of a complex type; a.real refers to the real member of a complex type.

Sequences

Sequences include strings, lists, tuples, and arrays. Sequences are described in Sequences and Sequence operations.

35Abaqus Scripting User's Guide

Python data types

Determining the type of a variable

You use the type() function to return the type of the object to which a variable refers.

>>> a = 2.375
>>> type(a)
<type 'float'>
>>> a = 1
>>> type(a)
<type 'int'>
>>> a = 'chamfer'
>>> type(a)
<type 'string'>

Abaqus Scripting User's Guide36

Determining the type of a variable

Sequences

Sequences are important and powerful data types in Python. A sequence is an object containing a series of objects.
There are three types of built-in sequences in Python—list, tuple, and string. In addition, imported modules allow you
to use arrays in your scripts. The following table describes the characteristics of list, tuple, string, and array sequences.

SyntaxMethodsHomogeneousMutableType

[9.0,'b']YesNoYeslist

('a',45)NoNoNotuple

'stress'YesYesNostring

array((1.2,2.3),(2.5,5.8))YesYesYesarray

• Mutable: Elements can be added, changed, and removed.

• Homogeneous: Elements must be of the same type.

• Methods: The type has methods that can be used to manipulate the sequence; for example, sort(), reverse().

• Syntax: The syntax used to create the sequence.

List

Lists are mutable heterogeneous sequences (anything that can be modified is called mutable). A list can be a
sequence of strings, integers, floats, or any combination of these. In fact, a list can contain any type of object;
for example,

>>> myIntegerList = [7,6,5,4]
>>> myFloatList = [7.1,6.5,5.3,4.8]

You can refer to individual items from a sequence using the index of the item. Indices start at zero. Negative
indices count backward from the end of a sequence.

>>> myList = [1,2,3]
>>> myList[0]
1
>>> myList[1] = 9
>>> myList
[1, 9, 3]
>>> myNewList = [1.0,2.0,myList]
>>> myNewList
[1.0, 2.0, [1, 9, 3]]
>>> myNewList[-1]
[1, 9, 3]

Lists are heterogeneous, which means they can contain objects of different type.

>>> myList=[1,2.5,'steel']

A list can contain other lists.

>>> myList=[[0,1,2],[3,4,5],[6,7,8]]
>>> myList[0]
[0, 1, 2]
>>> myList[2]
[6,7,8]

myList[1][2] refers to the third item in the second list. Remember, indices start at zero.

>>> myList[1][2]
5

37

Sequences

Python has built-in methods that allow you to operate on the items in a sequence.

>>> myList
[1, 9, 3]
>>> myList.append(33)
>>> myList
[1, 9, 3, 33]
>>> myList.remove(9)
>>> myList
[1, 3, 33]

The following are some additional built-in methods that operate on lists:

count()

Return the number of times a value appears in the list.

>>> myList = [0,1,2,1,2,3,2,3,4,3,4,5]
>>> myList.count(2)
3

index()

Return the index indicating the first time an item appears in the list.

>>> myList.index(5)
11
>>> myList.index(4)
8

insert()

Insert a new element into a list at a specified location.

>>> myList.insert(2,22)
>>> myList
[0, 1, 22, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5]

reverse()

Reverse the elements in a list.

>>> myList.reverse()
>>> myList
[5, 4, 3, 4, 3, 2, 3, 2, 1, 2, 22, 1, 0]

sort()

Sort the elements in a list.

>>> myList.sort()
>>> myList
[0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 22]

Tuple

Tuples are very similar to lists; however, they are immutable heterogeneous sequences, which means that you
cannot change them after you create them. You can think of a tuple as a list that cannot be modified. Tuples have

Abaqus Scripting User's Guide38

Sequences

no methods; you cannot append items to a tuple, and you cannot modify or delete the items in a tuple. The
following statement creates an empty tuple:

myTuple = ()

The following statement creates a tuple with one element:

myTuple = (5.675,)

You can use the tuple() function to convert a list or a string to a tuple.

>>> myList = [1, 2, "stress", 4.67]
>>> myTuple = tuple(myList)
>>> print(myTuple)
(1, 2, 'stress', 4.67)
>>> myString = 'Failure mode'
>>> myTuple = tuple(myString)
>>> print(myTuple)
('F', 'a', 'i', 'l', 'u', 'r', 'e', ' ', 'm', 'o', 'd', 'e')

The following statements create a tuple and then try to change the value of an item in the tuple. An
AttributeError error message is generated because a tuple is immutable.

>>> myTuple = (1,2,3,4,5)
>>> type(myTuple)
<type 'tuple'>
>>> myTuple[2]=3
Traceback (innermost last):
 File "", line 1, in ?
AttributeError: __setitem__

String

Strings are immutable sequences of characters. Strings are defined by single or double quotation marks. You
can use the “+” operator to concatenate two strings and create a third string; for example,

>>> odbString = "Symbol plot from "
>>> odb = 'load1.odb'
>>> annotationString = odbString + odb
>>> print(annotationString)
Symbol plot from load1.odb

Note:

You can also use the “+” operator to concatenate tuples and lists.

Python provides a set of functions that operate on strings.

>>> annotationString
'Symbol plot from load1.odb'
>>> annotationString.upper()
'SYMBOL PLOT FROM LOAD1.ODB'
>>> annotationString.split()
['Symbol', 'plot', 'from', 'load1.odb']

As with all sequences, you use negative indices to index backward from the end of a string.

>>> axis_label = 'maxstrain'
>>> axis_label[-1]
'n'

39Abaqus Scripting User's Guide

Sequences

Use the built-in str function to convert an object to a string.

>>> myList = [8, 9, 10]
>>> str(myList)
'[8, 9, 10]'

Look at the standard Python documentation on the official Python website (http://www.python.org) for a list of
common string operations. String functions are described in the String Services section of the Python
Library Reference.

Array

Arrays are mutable homogeneous sequences. The numpy module allows you to create and operate on
multidimensional arrays. Python determines the type of elements in the array; you do not have to declare the
type when you create the array. For more information about the numpy module, see http://numpy.scipy.org.

>>> from numpy import array
>>> myIntegerArray = array([[1,2],[2,3],[3,4]])
>>> myIntegerArray
array([[1, 2],
 [2, 3],
 [3, 4]])
>>> myRealArray =array([[1.0,2],[2,3],[3,4]])
>>> myRealArray
array([[1., 2.],
 [2., 3.],
 [3., 4.]])
>>> myRealArray * myIntegerArray
array([[1., 4.],
 [4., 9.],
 [9., 16.]])

Abaqus Scripting User's Guide40

Sequences

Sequence operations

Python provides a set of tools that allow you to operate on a sequence.

Slicing

Sequences can be divided into smaller sequences. This operation is called slicing. The expression sequence[m:n]
returns a copy of sequence from m to n−1. The default value for m is zero; the default value for n is the length
of the sequence.

>>> myList = [0,1,2,3,4]
>>> myList[1:4]
[1, 2, 3]

>>> myString ='linear load'
>>> myString[7:]
'load'
>>> myString[:6]
'linear'

Repeat a sequence

>>> x=(1,2)
>>> x*2
(1, 2, 1, 2)
>>> s = 'Hoop Stress'
>>> s*2
>>> 'Hoop StressHoop Stress'

Determine the length of a sequence

>>> myString ='linear load'
>>> len(myString)
11
>>> myList = [0,1,2,3,4]
>>> len(myList)
5

Concatenate sequences

>>> a = [0,1]
>>> b = [9,8]
>>> a + b
[0, 1, 9, 8]
>>> test = 'wing34'
>>> fileExtension = '.odb'
>>> test+fileExtension
'wing34.odb'

Range

The range() function generates a list containing a sequence of integers. You can use the range() function
to control iterative loops. The arguments to range are start (the starting value), end (the ending value plus one),

41

Sequence operations

and step (the step between each value). The start and step arguments are optional; the default start argument is
0, and the default step argument is 1. The arguments must be integers.

>>> list(range(2,8))
[2, 3, 4, 5, 6, 7]
>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(1,8,2))
[1, 3, 5, 7]

Convert a sequence type

Convert a sequence to a list or a tuple.

>>> myString='noise'
>>> myList = list(myString) #Convert a string to a list.
>>> myList[0] = 'p'
>>> myList
['p', 'o', 'i', 's', 'e']
>>> myTuple = tuple(myString) #Convert a string to a tuple.
>>> print(myTuple)
('n', 'o', 'i', 's', 'e')

Abaqus Scripting User's Guide42

Sequence operations

Python None

Python defines a special object called the None object or “Python None” that represents an empty value. The None
object is returned by functions and methods that do not have a return value. The None object has no value and prints
as None. For example

>>> a = [1, 3, 7, 5]
>>> print(a.sort())
None
>>> import sys
>>> x = sys.path.append('.')
>>> print(x)
None

43

Python None

Continuation lines and comments

You can continue a statement on the following line if you break the statement between a set of (), {}, or [] delimiters.
For example, look at the tuple that was used in Creating a part to assign the coordinates of the vertices to a variable:

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
 (30, -30), (20, -10), (-20, -10),
 (-30, -30), (-40, -30), (-10, 30))

If a statement breaks at any other place, you must include a “\” character at the end of the line to indicate that it is
continued on the next line. For example,

distance = mdb.models['Model-1'].parts['housing'].\
 getDistance(entity1=node1, entity2=node2)

When you are running Python from a local Linux or Windows window, the prompt changes to the “. . .” characters to
indicate that you are on a continuation line.

Comments in a Python script begin with the “#” character and continue to the end of the line.

>>> #Define material constants
>>> modulus = 1e6 #Define Young's modulus

Abaqus Scripting User's Guide44

Continuation lines and comments

Printing variables using formatted output

Python provides a print function that displays the value of a variable. For example,

>>> freq = 22.0/7.0
>>> x = 7.234
>>> print('Vibration frequency = ', freq)
Vibration frequency = 3.14285714286
>>> print('Vibration frequency = ', freq, 'Displacement =\
... ', x)
Vibration frequency = 3.14285714286 Displacement = 7.234

The string modulus operator % allows you to format your output. The %s operator in the following example converts
the variables to strings.

>>> print('Vibration frequency = %s Displacement =\
... %s' % (freq, x))
Vibration frequency = 3.14285714286 Displacement = 7.234

The %f operator specifies floating point notation and indicates the total number of characters to print and the number
of decimal places.

>>> print('Vibration frequency = %6.2f Displacement =\
... %6.2f' % (freq, x))
Vibration frequency = 3.14 Displacement = 7.23

The %E operator specifies scientific notation and indicates the number of decimal places.

>>> print('Vibration frequency = %.6E Displacement =\
... %.2E' % (freq, x))
Vibration frequency = 3.142857E+00 Displacement = 7.23E+00

The following list includes some additional useful printing operators.

• The + flag indicates that a number should include a sign.

• The \n escape sequence inserts a new line.

• The \t escape sequence inserts a tab character.

For example,

>>> print('Vibration frequency = %+.6E\nDisplacement =\
... %+.2E' % (freq, x))
Vibration frequency = +3.142857E+00
Displacement = +7.23E+00

45

Printing variables using formatted output

Control blocks

Python does not use a special character, such as “}”, to signify the end of a control block such as an if statement.
Instead, Python uses indentation to indicate the end of a control block. You define the indentation that governs a block.
When your script returns to the original indentation, the block ends. For example,

max = 5
i = 0
while i <= max:
 square = i**2
 cube = i**3
 print(i, square, cube)
 i = i + 1
print('Loop completed')

When you are using the Python interpreter from the Abaqus/CAE command line interface or if you are running Python
from a local Linux or Windows window, the prompt changes to the “. . .” characters to indicate that you are in a block
controlled by indentation.

if, elif, and else

>>> load = 10
>>> if load > 6.75:
... print 'Reached critical load'
... elif load < 2.75:
... print 'Minimal load'
... else:
... print 'Typical load'

while

>>> load = 10
>>> length = 3
>>> while load < 1E4:
... load = load * length
... print load

Use break to break out of a loop.

>>> while 1:
... x = raw_input(Enter a number or 0 to quit:')
... if x == '0':
... break
... else:
... print x

Use continue to skip the rest of the loop and to go to the next iteration.

>>> load = 10
>>> length = -3
>>> while load < 1E6: #Continue jumps up here
... load = load * length
... if load < 0:
... continue #Do not print if negative
... print load

Abaqus Scripting User's Guide46

Control blocks

for

Use a sequence to control the start and the end of for loops. The range() function is an easy way to create
a sequence.

>>> for i in range(5):
... print i
...
0
1
2
3
4

47Abaqus Scripting User's Guide

Control blocks

Programming techniques

The following sections introduce you to some of the techniques you will need to program with Python.

In this section:

• Creating functions

• Using dictionaries

• Reading and writing from files

• Error handling

• Functions and modules

• Writing your own modules

Abaqus Scripting User's Guide48

Creating functions

You can define your own functions in Python. A function is like a subroutine in Fortran. You can pass arguments into
a function, it performs the operation, and it can return one or more values. For example, the following function returns
the distance of a point from the origin. The def statement starts a function definition.

def distance(x, y):
 a = x**2 + y**2
 return a ** 0.5

You supply the arguments to a function in parentheses; for example,

>>> distance(4.7, 9.1)
10.2420701033

You can assign the return value to a variable:

>>> d = distance(4.7, 9.1)
>>> print(d)
10.2420701033

One of the methods provided by Abaqus uses as many as 50 arguments. Some of the arguments are required by the
method; others are optional, and Abaqus provides an initial or default value. Fortunately, you can call a function or a
method without providing every optional argument if you use Python's “keyword” arguments. A keyword specifies
the argument that you are providing. Keyword arguments also make your scripts more readable. For example, the
following defines a function called calculateCylinderVolume:

>>> from math import *
>>> def calculateCylinderVolume(radius,height):
... volume = pi * radius**2 * height
... return volume

You can call the function with the following line:

>>> volume = calculateCylinderVolume(3.2,27.5)

Here the arguments are called positional arguments because you are relying on their position in the function call to
determine the variable to which they are assigned in the function—radius followed by height.

The following is the same statement using keyword arguments:

>>> volume = calculateCylinderVolume(radius=3.2, height=27.5)

Keyword arguments make your code more readable. In addition, if you use keyword arguments, you can enter the
arguments in any order.

>>> volume = calculateCylinderVolume(height=27.5, radius=3.2)

You can define default values for an argument in a function definition. For example, the following sets the default
value of radius to 0.5 and the default value of height to 1.0:

>>> from math import *
>>> def calculateCylinderVolume(radius=0.5,height=1.0):
... volume = pi * radius * radius * height
... return volume

You can now call the function without providing all the arguments. The function assigns the default value to any
missing arguments.

>>> volume = calculateCylinderVolume(height=27.5)

It is good programming practice to use a documentation string that indicates the purpose of a function and the arguments
expected. A documentation string appears at the top of a function and is delimited by triple quotes """. You can use

49

Creating functions

the __doc__ method to obtain the documentation string from a function while running the Python interpreter. For
example,

>>>def calculateCylinderVolume(radius=0.5,height=1.0):
... """
... Calculates the volume of a cylinder.
...
... Takes two optional arguments, radius (default=0.5)
... and height (default=1.0).
... """
... from math import *
... volume = pi * radius**2 * height
... return volume
...
>>> print(calculateCylinderVolume.__doc__)

Calculates the volume of a cylinder.

Takes two optional arguments, radius (default=0.5)
and height (default=1.0).

You can retrieve the documentation string for the methods in the Abaqus Scripting Interface. For example,

>>> mdb.Model.__doc__
'Mdb.Model(name <, description, stefanBoltzmann, absoluteZero>) ->
 This method creates a Model object.'

>>> session.Viewport.__doc__
'Session.Viewport(name <, origin, width, height, border, titleBar,
 titleStyle, customTitleString>)
 -> This method creates a Viewport object with the specified
 origin and dimensions.'

The documentation string shows the name of each argument name and whether the argument is required or optional.
The string also shows a brief description of the method.

You can use the sys module to retrieve command line arguments and pass them to a function. For example, the
following script takes two arguments—the X- and Y-coordinates of a point—and calculates the distance from the point
to the origin. The script uses the following modules:

• The sys module to retrieve the command line arguments.

• The math module to calculate the square root.

import sys, math
#~~~
def distance(x, y):
 """
 Prints distance from origin to (x, y).

 Takes two command line arguments, x and y.
 """

 # Square the arguments and add them.

 a = x**2 + y**2

 # Return the square root.

 return math.sqrt(a)

Retrieve the command line arguments and

Abaqus Scripting User's Guide50

Creating functions

convert the strings to floating-point numbers.

x = float(sys.argv[1])
y = float(sys.argv[2])

Call the distance function.

d = distance(x, y)

Print the result.

print('Distance to origin = ', d)

To use this script, do the following:

• Copy the statements into a file called distance.py in your local directory.

• Type the following at the system prompt:

abaqus python distance.py 30 40

Abaqus executes the script and prints the result.

Distance to origin = 50.0

51Abaqus Scripting User's Guide

Creating functions

Using dictionaries

Dictionaries are a powerful tool in Python. A dictionary maps a variable to a set of data, much like a real dictionary
maps a word to its definition, its pronunciation, and its synonyms. Dictionaries are similar to lists in that they are not
homogeneous and can contain objects of any type. To access an object in a list, you provide the integer index that
specifies the position of the object in the list. For example,

>>> myList = [6,2,9]
>>> myList[1]
2

In contrast, you access an object in a dictionary through its key, which can be a string, an integer, or any type of
immutable Python object. There is no implicit order to the keys in a dictionary. In most cases you will assign a string
to the dictionary key. The key then becomes a more intuitive way to access the elements in a dictionary. You use square
brackets and the dictionary key to access a particular object. For example,

>>> myPart = {} #Create an empty dictionary
>>> myPart['size'] = 3.0
>>> myPart['material'] = 'Steel'
>>> myPart['color'] = 'Red'
>>> myPart['number'] = 667

You can add dictionary keys at any time.

>>> myPart['weight'] = 376.0
>>> myPart['cost'] = 10.34

You use the key to access an item in a dictionary.

>>> costOverWeight = myPart['cost'] / myPart['weight']
>>> costOverWeight
0.0275
>>> description = myPart['color'] + myPart['material']
>>> description
'RedSteel'

Dictionaries are not sequences, and you cannot apply sequence methods such as slicing and concatenating to dictionaries.
Dictionaries have their own methods. The following statement lists the methods of the dictionary myPart.

>>> myPart.__methods__
['clear', 'copy', 'get', 'items', 'keys',
'update', 'values']

The keys() method returns a list of the dictionary keys.

>>> myPart.keys()
['size', 'weight', 'number', 'material', 'cost', 'color']

The values() method returns a list of the values of each entry in the dictionary.

>>> myPart.values()
[3.0, 376.0, 667, 'Steel', 10.34, 'Red']

The items() method returns a list of tuples. Each tuple contains the key and its value.

>>> myPart.items()
[('size', 3.0), ('number', 667), ('material', 'Steel'),
 ('color', 'Red'), ('weight', 376.0), ('cost', 10.34),]

You use the in syntax to see if a key exists. A return value of True indicates the key is a member of the dictionary.
A return value of False indicates the key is not a member.

>>> 'color' in myPart
1

Abaqus Scripting User's Guide52

Using dictionaries

Python's del statement allows you to delete a variable.

>>> del myPart

You can also use del to delete an item from a dictionary.

>>> del myPart['color']
>>> 'color' in myPart
False

You can use the keys(), values(), or items() methods to loop through a dictionary. In the following example,
items() returns two values; the first is assigned to property, and the second is assigned to setting.

>>> for property, setting in myPart.items():
... print(property, setting)
...
size 3.0
weight 376.0
number 667
material Steel
cost 10.34

53Abaqus Scripting User's Guide

Using dictionaries

Reading and writing from files

Many of the file commands are built-in Python commands.
You do not have to import a module to use file commands. You use the open() function to create a file.

>>> myInputFile = open('crash_test/fender.txt','r')
>>> myOutputFile = open('peak_deflection.txt','w+')

The first line opens an existing file in the crash_test directory called fender.txt. The file is opened in read-only
mode; myInputFile is a variable that refers to a file object. The second line creates and opens a new file object in
the local directory called peak_deflection.txt. This file is opened in read and write mode.

Use the “__methods__” technique that we saw earlier to see the methods of a file object.

>>> myOutputFile = open('peak_deflection.txt','w')
>>> myOutputFile.__methods__
['close', 'fileno', 'flush', 'isatty', 'read',
'readinto', 'readline', 'readlines', 'seek', 'tell',
'truncate', 'write', 'writelines']

The readline() method reads a single line from a file into a string, including the new line character that terminates
the string. The readlines() method reads all the lines in a file into a list. The write() function writes a string
to a file. Look at the standard Python documentation on the official Python website (http://www.python.org) for a
description of functions that operate on files. File objects are described in the Built-in Types section of the
Python Library Reference.

The following example reads each line of a text file and changes the line to uppercase characters:

Read-only is the default access mode

>>> inputFile = open('foam.txt')

You must declare write access

>>> outputFile = open('upper.txt','w')
>>> lines = inputFile.readlines()
>>> for line in lines:
... newLine = line.upper()
... outputFile.write(newLine)
...
>>> inputFile.close()
>>> outputFile.close()

The first line opens the input file; you do not need the 'r' because read-only is the default access mode. The next line
opens a new file to which you will write. You read the lines in the input file into a list. Finally, you enter a loop that
converts each line to uppercase characters and writes the result to the output file. The final two lines close the files.

Abaqus Scripting User's Guide54

Reading and writing from files

Error handling

When a script encounters unusual circumstances, Python allows you to modify the flow of control through the script
and to take the necessary action. The action of signaling a problem during execution is called raising or throwing an
exception. Recognizing the problem is called catching an exception. Taking appropriate action is called exception
handling.

Python provides exception handling through the try and except commands. For example, the following statement
attempts to open an existing file for reading:

>>> outputFile = open('foam.txt')

If the file does not exist, the statement fails, and Python displays the following error message:

>>> outputFile = open('foam.txt')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IOError: (2, 'No such file or directory')

If you use exception handling, you can catch the error, display a helpful message, and take the appropriate action. For
example, a revised version of the code attempts to open the same file within a try statement. If an IOError error is
encountered, the except statement catches the IOError exception and assigns the exception's value to the variable
error.

>>> try:
... outputFile = open('foam.txt')
... except IOError as error:
... print('Exception trapped: ', error)
...
Exception trapped: (2, 'No such file or directory')

You can raise your own exceptions by providing the error type and the error message to the raise statement. The
following example script raises an exception and displays a message if the function myFunction encounters a
problem.

def myFunction(x,y):

 if y == 0:
 raise ValueError('y argument cannot be zero')
 else:
 return x/y

try:
 print(myFunction(temperature, velocity))
except ValueError as error:
 print(error)

Exception handling is discussed in more detail in Error handling in the Abaqus Scripting Interface.

55

Error handling

Functions and modules

When you start Python from a local window or from Abaqus/CAE, the Python interpreter is aware of a limited set of
built-in functions.
For example, try entering the following at the Python prompt:

>>> myName = 'Einstein'
>>> len(myName)

Python returns the number 8, indicating the length of the string myName. The len() function is a built-in function
and is always available when you are using Python. To see a list of the built-in functions provided by Python, type
dir(__builtins__) at the Python prompt.

Note:

dir(__builtins__) is typed as dir(“underscore underscore”builtins“underscore underscore”). You have
seen this “underscore underscore” notation already in Sequences.

In addition, you can look at the standard Python documentation on the official Python website (http://www.python.org)
for a list of built-in functions. Built-in functions are described in the Built-in Functions section of the Python
Library Reference.

Many functions, however, are not built-in; for example, most of the math functions, such as sin() and cos(), are
not available when you start Python. Functions that are not built-in are defined in modules. Modules are a way of
grouping functionality and are similar to a Fortran library of subroutines. For example, the following code could be
the opening lines of a Python script. The code imports the Python module sys and uses the argv member of sys to
print the command line arguments:

import sys
for argument in sys.argv:
 print(argument)

You must first import the module to make its functions, names, and functionality available to the Python interpreter.
Try the following:

>>> from math import *
>>> x = pi/4.0
>>> sin(x)
0.707106781187

The first line imports all of the names from the math module. The second line uses pi, a float number defined in the
math module. The third line refers to a sin() function. Python can use the sin() function because you imported
it from the math module.

To import only the sin() function, you could have typed

>>> from math import sin

You need to import a module only once during a session. Once a module is imported, its functions, methods, and
attributes are always available to you. You cannot “unload” a module after you import it.

To see a list of all the functions that come with the math module, look at the Miscellaneous Services section
of the Python Library Reference. You can download public-domain modules, and you can create your own
modules.

Python provides a second approach to importing modules. For example,

>>> import math
>>> x = 22.0/(7.0 * 4.0)
>>> math.sin(x)
0.707330278085

Abaqus Scripting User's Guide56

Functions and modules

The “import” approach shown above imports the module as a unit, and you must qualify the name of an object from
the module. To access a function from the math module in our example, you must prepend the function with math.;
the math. statement is said to “qualify” the sin() function.

What is the difference between the two approaches to importing modules? If two modules contain an object with the
same name, Python cannot distinguish between the objects if you use the “from modulename import *” approach. If
two objects have the same name, Python uses the object most recently imported. However, if you use the “import
modulename” approach, modulename qualifies the name of the object and makes it unique.

57Abaqus Scripting User's Guide

Functions and modules

Writing your own modules

You can create your own module containing a set of Python functions.
You can import this module and make use of its functions. The name of the module to import is the same as the name
of the file containing the functions without the .py file suffix.

For example, you can create a module called myUtilities by copying a modified version of the function that
calculates the distance from a point to the origin into a file called myUtilities.py.

""" myUtilities - a module of mathematical functions"""

import math
#~~~
def distance(x, y):
 """
 Prints distance from origin to (x, y).

 Takes two arguments, x and y.
 """

 # Square the arguments and add them.

 a = x**2 + y**2

 # Return the square root.

 return math.sqrt(a)

You must import the module to make use of the functions and constants that it contains.

import myUtilities

distance = myUtilities.distance(30, 50)

You can use the __doc__ method to obtain the documentation string from a module. For example,

myUtilities.__doc__
' myUtilities - a module of mathematical functions'

A tool for finding bugs in your modules is provided with Abaqus. The tool is called pychecker. When you import
a module, pychecker prints warnings for any problems it finds with the Python source code. For example,

>>> from pychecker import checker
>>> import myUtilities
d:\users\smith\myUtilities.py:3: Imported module (sys) not used
d:\users\smith\myUtilities.py:14: Local variable (a) not used
d:\users\smith\myUtilities.py:18: No global (b) found

For more information about pychecker, see the official Python website (http://www.python.org)

If you import a module during an interactive session using the command line interface and then make changes to the
module, Python will not recognize your changes until you reload the module; for example:

import myModule, importlib
maxStress = myModule.calculateStress(odb)

Edit myModule.py and modify the calculateStress method.

importlib.reload(myModule)
maxStress = myModule.calculateStress(odb)

Abaqus Scripting User's Guide58

Writing your own modules

Further reading

This chapter has introduced only the basics of the Python programming language.
You are encouraged to look at the standard Python documentation on the official Python website (http://www.python.org)
for more information. In addition, you may find it beneficial to work through the online tutorial on the Python website.
A Python reference book will go into more details on object-oriented programming techniques; see Python resources

for a list of Python books.

There are many resources available from the Python community. You should look at the official Python website
(http://www.python.org) to see the various Python packages that are available publicly.

59

Further reading

Using Python and the Abaqus Scripting Interface

This section explains how Python and the Abaqus Scripting Interface combine to provide a powerful interface
to Abaqus/CAE.

The Abaqus Scripting Interface is an extension of the Python language and uses the syntax required by Python.
Techniques for combining Python statements and Abaqus Scripting Interface commands are introduced, and
numerous examples are provided. The syntax of an Abaqus command is explained along with details of how
you use the commands to interact with Abaqus/CAE.

This section is intended as a programmer's guide to using the Abaqus Scripting Interface; the Abaqus Scripting

Reference Guide describes the details of each command.

In this section:

• Executing scripts

• Abaqus Scripting Interface documentation style

• Abaqus Scripting Interface data types

• Object-oriented programming and the Abaqus Scripting Interface

• Error handling in the Abaqus Scripting Interface

• Extending the Abaqus Scripting Interface

Abaqus Scripting User's Guide60

Executing scripts

You have seen how to execute Python statements from the stand-alone Python interpreter. If your script does not access
the functionality of Abaqus/CAE, you can run the script by typing abaqus python scriptname.py at the system
prompt. Abaqus will run the script through the Python interpreter and return you to the system prompt.

If your script accesses the functionality of any of the Abaqus/CAE modules, the statements must be interpreted by the
Abaqus/CAE kernel; you cannot run the script from the Python interpreter invoked from the system prompt. You must
execute the script in Abaqus/CAE by selecting File->Run Script from the main menu bar and selecting the file to
execute. In addition, the script must contain the following statements:

from abaqus import *
from abaqusConstants import *

If your script accesses and manipulates data in an output database, you can execute the script using either of the methods
already described:

• Type abaqus pythonscriptname .py at the system prompt. The script must contain the following statement:

from odbAccess import *

• Select File->Run Script from the Abaqus/CAE main menu bar, and select the file to execute. The script must
contain the following statement:

from visualization import *

When you run a script in Abaqus/CAE from the CLI, as part of a macro, or from the File->Run Script menu option,
Abaqus/CAE displays a stop button that you can use to stop a script that has been running for a predefined duration.
If you want to display this button for scripts run using other methods, execute the showStopButtonInGui command
from the abaqus module before you run the script. The command is not issued automatically when a script is run
from the user interface; for example, as part of a plug-in.

61

Executing scripts

Abaqus Scripting Interface documentation style

This section describes the style that is used to describe Abaqus Scripting Interface commands.
The commands are found in the Abaqus Scripting Reference Guide. You may want to refer to the Abaqus Scripting

Reference Guide while you read this section and compare the style of a documented command with the descriptions
provided here.

In this section:

• How the commands are ordered

• Access

• Path

• Arguments

• Return value

Abaqus Scripting User's Guide62

How the commands are ordered

The following list describes the order in which commands are documented in the Abaqus Scripting Reference Guide:

• Chapters are grouped alphabetically by functionality. In general, the functionality corresponds to the modules and
toolsets that are found in Abaqus/CAE; for example, Amplitude commands, Animation commands, and Assembly

commands.

• Within each chapter the primary objects appear first and are followed by other objects in alphabetical order. For
example, in Mesh commands the objects are listed in the following order:

- Assembly

- Part

- ElemType

- MeshEdge

- MeshElement

- MeshFace

- MeshNode

- MeshStats

• Within each object description, the commands are listed in the following order:

- Constructors (in alphabetical order)

- Methods (in alphabetical order)

- Members

• Some methods are not associated with an object and appear at the end of a chapter; for example, the
evaluateMaterial() method appears at the end of Material commands.

63

How the commands are ordered

Access

The description of each object in the Abaqus Scripting Reference Guide begins with a section that describes how you
access an instance of the object. The import statements are provided for completeness. Abaqus/CAE imports all modules
when you start a session, and you do not need to include the import module name statement in your scripts.
However, you must import the Abaqus Scripting Interface Symbolic Constants with the following statement:

from abaqusConstants import *

These should be the first statement in all your Abaqus Scripting Interface scripts.

The following is the access description for the Material object:

import material
mdb.models[name].materials[name]

The first line of the access description indicates the module that Abaqus/CAE imported to make this object, and its
methods and members, available to your script.

The access description also specifies where instances of the object are located in the data model. In the previous example
the second line indicates how your script can access Material objects from a particular model. You must qualify a
material object, command, or member with the variable mdb, as described in Functions and modules. For example,

mdb.models[crash].Material[steel]
mdb.models[crash].materials[steel].Elastic(
 table=((30000000.0, 0.3),))
elasticityType = mdb.models[crash].materials[steel].elastic.type

Similarly, if you are reading from an output database, the following is the access description for the HistoryRegion
object:

import odbAccess
session.odbs[name].steps[name].historyRegions[name]

The first line indicates that Abaqus/CAE imported the odbAccess module to make the Odb objects, methods, and
members available to your Abaqus Scripting Interface script. The second line indicates how your script can access
HistoryRegion objects from a particular step.

The Access description for the FieldOutput object is

session.odbs[name].steps[name].frames[i].fieldOutputs[name]

The following statements show how you use the object described by this Access description:

sideLoadStep = session.odbs['Forming loads'].steps['Side load']
lastFrame = sideLoadStep.frames[-1]
stressData = lastFrame.fieldOutputs['S']
integrationPointData = stressData.getSubset(
 position=INTEGRATION_POINT)
invariantsData = stressData.validInvariants

• The next to last line shows the getSubset method of the FieldOutput object.

• The last line shows the validInvariants member of the FieldOutput object.

Abaqus Scripting User's Guide64

Access

Path

A method that creates an object is called a “constructor.” The Abaqus Scripting Interface uses the convention that
constructors begin with an uppercase character. In contrast, methods that operate on an object begin with a lowercase
character. The description of each constructor in the Abaqus Scripting Reference Guide includes a path to the command.
For example, the following describes the path to the Viewport constructor:

session.Viewport

Some constructors include more than one path. For example, you can create a datum that is associated with either a
Part object or the RootAssembly object, and each path is listed.

mdb.models[name].parts[name].DatumAxisByCylFace
mdb.models[name].rootAssembly.DatumAxisByCylFace

The path is not listed if the method is not a constructor.

If you are using the Abaqus Scripting Interface to read data from an output database, the objects exist when you open
the output database, and you do not have to use constructors to create them. However, if you are creating or writing
to an output database, you may need to use constructors to create new objects, such as part instances and steps. The
documentation describes the path to the constructors that create objects in an output database.

For example, the Path description for the FieldOutput constructor is

session.odbs[name].steps[name].frames[i].FieldOutput

The following statement creates a FieldOutput object:

myFieldOutput = session.odbs[name].steps['Side load'].frames[-1].\
 FieldOutput(name='S', description='stress',
 type=TENSOR_3D_FULL)

65

Path

Arguments

The ellipsis (...) in the command description indicates that the command takes one or more arguments. For example,
the Viewport constructor takes arguments.

Viewport(...)

In contrast, the makeCurrent method takes no arguments.

makeCurrent()

Some arguments of a command are required, and some arguments are optional. In the Abaqus Scripting Reference

Guide the required arguments are listed first, followed by the optional arguments. If the argument is optional, the
default value is provided. The default value is the value of an optional argument when you call a method and omit the
argument.

The setValues method is a special case. All of the arguments to the setValues method are optional, but any
argument that you omit retains its current value; Abaqus does not assign a default value to the argument.

Some objects have no constructors; Abaqus creates the objects for you. For such objects the documentation describes
the “initial value” of an optional argument. The initial value given for the argument is the initial value assigned to the
corresponding member when Abaqus creates the object. For example, the defaultViewportAnnotationOptions object
has no constructor; Abaqus creates the defaultViewportAnnotationOptions object when you start a session. When you
create a new viewport, the settings are copied from the current viewport.

You can use the setValues method to modify the value of a member; for example, to modify the value of the triad

member of the defaultViewportAnnotationsOptions object. When you call
session.defaultViewportAnnotationOptions.setValues(triad=OFF), the value of the triad

member is set to off. The other member values remain unchanged; this behavior is called “as is” behavior because the
values remain “as is.” The setValuesInStep method displays similar “as is” behavior.

Keyword and positional arguments are described in Creating functions. We recommend that you use keyword arguments
since they can be supplied in any order and they make your scripts easier to read and debug; for example,

newViewport = session.Viewport(name='myViewport',
 origin=(10, 10), width=100, height=50)

If you choose not to use keywords, the arguments must be provided in the order in which they are documented.

newViewport = session.Viewport('myViewport',
 (10, 10), 100, 50)

You can use a combination of keyword and positional arguments. Keyword arguments can be supplied after positional
arguments; however, positional arguments cannot be entered after keyword arguments. For example, you can use the
following statement:

newViewport = session.Viewport('myViewport',
 (10, 10), width=100, height=50)

However, you cannot use the following statement:

newViewport = session.Viewport(name='myViewport',
 (10, 10), 100, 50)

You will find it easier to use keyword arguments so that you do not have to concern yourself with the positional
requirements.

Abaqus Scripting User's Guide66

Arguments

Return value

All commands return a value. Many commands return the None object described in Python None. Constructors (methods
that create an object) always return the object being created. The return value of a command can be assigned to a Python
variable. For example, in the following statement the Viewport constructor returns a Viewport object, and the variable
newViewport refers to this new object.

newViewport = session.Viewport(name='myViewport',
 origin=(10, 10), width=100, height=50)

You can use the object returned by a command in subsequent statements. For example, the titlebar member of a
Viewport object is a Boolean specifying whether the viewport title bar is displayed and can have a value of either ON
or OFF. The following statement tests the titlebar member of the new viewport created by the previous statement:

if newViewport.titleBar:
 print('The title bar will be displayed.')

67

Return value

Abaqus Scripting Interface data types

This section describe the most common Abaqus Scripting Interface data type
The standard Python data types described in Python data types include integers, floats, strings, and sequences.
The Abaqus Scripting Interface adds over 500 additional data types.

In this section:

• SymbolicConstants

• Booleans

• Repositories

Abaqus Scripting User's Guide68

SymbolicConstants

Some arguments require that you provide a SymbolicConstant. SymbolicConstants are defined by the Abaqus Scripting
Interface and are written in all capital letters. If your script uses a SymbolicConstant defined by the Abaqus Scripting
Interface, you must import the SymbolicConstant with the following statement before you refer to it:

from abaqusConstants import *

When an argument to a command is a SymbolicConstant, the description in the Abaqus Scripting Reference Guide

lists all its possible values. For example, when you are printing an image, the image can be rendered in one of the
following formats: BLACK_AND_WHITE, GREYSCALE, or COLOR.

Similarly, a data member can be a SymbolicConstant. For example, the type member of the Elastic object can be one
of the following SymbolicConstants: ISOTROPIC, ORTHOTROPIC, ANISOTROPIC,
ENGINEERING_CONSTANTS, LAMINA, TRACTION, or COUPLED_TRACTION.

If the SymbolicConstants provided by the Abaqus Scripting Interface do not meet your needs, you can create your own
SymbolicConstants using the SymbolicConstant constructor. For more information, see SymbolicConstant object.

69

SymbolicConstants

Booleans

Python defines two Boolean values, True and False. The type of a Python Boolean is <type 'bool'>.

myPythonBoolean = True
type(myPythonBoolean)
<type 'bool'>

In addition, the Abaqus Scripting Interface defines a Boolean object, derived from the SymbolicConstant object, which
can take the values ON and OFF. For example, noPartsInputFile is a member of a Model object that indicates whether
the input file will be written with parts and assemblies. The type of the noPartsInputFile member is <type
'AbaqusBoolean'>.

Abaqus recommends that you use the Python Boolean in your scripts and that you convert existing scripts to use the
Python Boolean.

The value of a Boolean argument can appear to be ambiguous; for example,

newModel = mdb.ModelFromInputFile(name='beamTutorial',
 inputFileName='Deform')
newModel.setValues(noPartsInputFile=False)
print(newModel.noPartsInputFile)
OFF

Because of this ambiguity, you should test a Boolean for a positive or negative value, as opposed to comparing it to a
specific value like 0, OFF, or False. For example, the following statements show how you should test the value of a
Boolean member:

if (newModel.noPartsInputFile):
 print 'Input file will be written without parts \
 and assemblies. '
else:
 print 'Input file will be written with parts \
 and assemblies.'

Abaqus Scripting User's Guide70

Booleans

Repositories

Repositories are containers that store a particular type of object; for example, the steps repository contains all the steps
defined in the model. A repository maps to a set of information and is similar to a Python dictionary; for more
information, see Using dictionaries. However, only a constructor can add an object to a repository. In addition, all the
objects in a repository are of the same type. For example, the following repository contains all the models in the model
database:

 mdb.models

In turn, the following repository contains all the parts in the model Model-1:

 mdb.models['Model-1'].parts

As with dictionaries, you can refer to an object in a repository using its key. The key is typically the name you provided
in the constructor command when the object was created. For example, the Viewport constructor creates a new Viewport
object in the viewports repository.

session.Viewport(name='Side view',
 origin = (10,10), width=50, height=50)

The key to this new Viewport object in the viewports repository is Side view. You use this key to access this
particular Viewport object. For example,

session.viewports['Side view'].viewportAnnotationOptions.\
 setValues(legend=OFF, title=OFF)

You can make your scripts more readable by assigning a variable to an object in a repository. For example, you could
rewrite the previous statement after assigning the Viewport object to the variable myViewport:

myViewport = session.viewports['Side view']
myViewport.viewportAnnotationOptions.setValues(
 legend=OFF, title=OFF)

In general, if the user can create the object, its repository key is a string. In some cases Abaqus/CAE creates an object,
and the key can be a string, an integer, or a SymbolicConstant.

As with dictionaries, you can use the keys() method to access the repository keys.

>>> session.Viewport(name='Side view')
>>> session.Viewport(name='Top view')
>>> session.Viewport(name='Front view')
>>> for key in session.viewports.keys():
 ...
 print(key)
Front view
Top view
Side view

You can use the keys()[i] method to access an individual key; however, most repositories are not ordered, and
this is not recommended.

You can use the changeKey() method to change the name of a key in a repository. For example,

myPart = mdb.models['Model-1'].Part(name='housing',
 dimensionality=THREE_D, type=DEFORMABLE_BODY)
mdb.models['Model-1'].parts.changeKey(fromName='housing',
 toName='form')

71

Repositories

Object-oriented programming and the Abaqus Scripting Interface

You should now be familiar with some of the concepts behind object-oriented programming, such as objects,
constructors, methods, and members. This section describes how object-oriented programming relates to the
Abaqus Scripting Interface and summarizes some of the terminology.

In this section:

• The Abaqus Scripting Interface and methods

• The Abaqus Scripting Interface and members

• Object-oriented programming and the Abaqus Scripting Interface—a summary

Abaqus Scripting User's Guide72

The Abaqus Scripting Interface and methods

Most Abaqus Scripting Interface commands are methods. For example,

session.viewports['Viewport-1'].setValues(width=50)

In this example setValues() is a method of the Viewport object.

A constructor is a method that creates an object. By convention, all constructor names and all objects start with an
uppercase character in the Abaqus Scripting Interface. The name of a constructor is usually the same as the name of
the type of object it creates. In the following example Viewport is a constructor that creates a Viewport object
called myViewport:

myViewport = session.Viewport(name='newViewport',
 width=100,height=100)

Some objects do not have a constructor. The object is created as a member of another object when the first object is
created. For example, Abaqus creates the vertices of a part when you create a part's geometry, and the coordinates of
the vertices are stored as Vertex objects. The Vertex objects are members of the Part object. The following statement
prints the coordinates of the first vertex of a part:

print()
mdb.models['Model-1'].parts['Part-1'].vertices[0].pointOn

The standard Python statement object.__methods__ lists all the methods of an object. For example, the following
statement lists all the methods of a Viewport object:

session.viewports['myViewport'].__methods__

See the Abaqus Scripting Reference Guide for a description of each method of the Abaqus Scripting Interface objects.

73

The Abaqus Scripting Interface and methods

The Abaqus Scripting Interface and members

An object has members as well as methods. A member can be thought of as a property of an object. For example, width

is a member of the Viewport object. The following statements show how you access a member of an object:

>>> myWidth = session.viewports['myViewport'].width
>>> print('Viewport width =', myWidth)
Viewport width = 100.0

The standard Python statement object.__members__ lists all the members of an object. For example, the following
statement lists all the members of a Viewport object:

session.viewports['myViewport'].__members__

The values of members are specific to each instance of the object. For example, the value of the width member of a
Viewport object is specific to each viewport.

Members of an Abaqus object are read-only; consequently, you cannot change their value with a simple assignment
statement. You use the setValues() method to change the value of a member. For example, the setValues()
statement in the following script changes the thickness of a shell section:

>>> import section
>>> shellSection = mdb.models['Model-1'].HomogeneousShellSection(
 name='Steel Shell', thickness=1.0, material='Steel')
>>> print 'Original shell section thickness = ' \
 , shellSection.thickness
Original shell section thickness = 1.0
>>> shellSection.setValues(thickness=2.0)
>>> print 'Final shell section thickness = ' \
 , shellSection.thickness
Final shell section thickness = 2.0

You cannot use assignment to change the value of the Shell object.

>>> myShell.thickness = 2.0
TypeError: readonly Attribute

The following statements illustrate the use of constructors, methods, and members:

>>> # Create a Section object
>>> mySection = mdb.models['Model-1'].HomogeneousSolidSection(
 name='solidSteel', material='Steel', thickness=1.0)
>>> # Display the type of the object
>>> print 'Section type = ', type(mySection)
Section type = <type 'HomogeneousSolidSection'>
>>> # List the members of the object
>>> print 'Members of the section are:' , mySection.__members__
Members of the section are: ['category', 'dimension',
'layout', 'material', 'name',
'thickness']
>>> # List the methods of the object
>>> print 'Methods of the section are: ', mySection.__methods__
Methods of the section are: ['setValues']
>>> # Print the value of each member in a nice format
>>> for member in mySection.__members__:
 ...
 print 'mySection.%s = %s' % (member,
 getattr(mySection, member))
mySection.category = SOLID
mySection.dimension = THREE_DIM
mySection.layout = HOMOGENEOUS
mySection.material = Steel

Abaqus Scripting User's Guide74

The Abaqus Scripting Interface and members

mySection.name = solidSteel
mySection.thickness = 1.0

You use the Access description provided with each object in the Abaqus Scripting Reference Guide to determine
how you access the object. You append a method or member to this description when you are writing a script. Similarly,
you use the Path description provided with each constructor in the Abaqus Scripting Reference Guide to determine
the path to the constructor.

75Abaqus Scripting User's Guide

The Abaqus Scripting Interface and members

Object-oriented programming and the Abaqus Scripting Interface—a summary

After you create an object, you then use methods of the objects to enter or to modify the data associated with the object.
For example, you use the addNodes and addElements methods of the Part object to add nodes and elements,
respectively. Similarly, you use the addData method of the FieldOutput object to add field output data.

The following list summarizes some of the concepts behind object-oriented programming and how they relate to the
Abaqus Scripting Interface:

• An object encapsulates some data and functions that are used to manipulate those data.

• The data encapsulated by an object are called the members of the object.

• The functions that manipulate the data are called methods.

• The Abaqus Scripting Interface uses the convention that the name of a type of object begins with an uppercase
character; for example, a Viewport object.

• A method that creates an object is called a constructor. The Abaqus Scripting Interface uses the convention that
constructors begin with an uppercase character. In contrast, methods that operate on an object begin with a lowercase
character.

• After you create an object, you then use methods of the object to enter or to modify the data associated with the
object. For example, if you are creating an output database, you first create an Odb object. You then use the
addNodes and addElements methods of the Part object to add nodes and elements, respectively. Similarly,
you use the addData method of the FieldOutput object to add field output data to the output database.

• You use the Access description provided with each object in the Abaqus Scripting Reference Guide to determine
how you access the object. You append a method or a member to this description when you are writing a script.

• You use the Path description provided with each constructor in the Abaqus Scripting Reference Guide to determine
the path to the constructor.

• You use the setValues() method to modify the members of an Abaqus Scripting Interface object.

session.viewports['Side view'].setValues(origin=(20,20))

Abaqus Scripting User's Guide76

Object-oriented programming and the Abaqus Scripting Interface—a summary

Error handling in the Abaqus Scripting Interface

The basics of Python's exception handling apply to the Abaqus Scripting Interface.
Python's exception handling is described in Error handling. If certain circumstances arise while a script is
running, Python allows you to take the necessary action and still allows the script to continue. Alternatively,
when Abaqus/CAE issues (or “throws”) an exception and the exception is not handled by the script, Abaqus/CAE
displays the exception message in the message area and the script stops executing.

In this section:

• Standard Python exceptions

• Standard Abaqus Scripting Interface exceptions

• Additional Abaqus Scripting Interface exceptions

• Exception handling

77

Standard Python exceptions

Python exceptions arise from either system-related problems, such as a disk or network error, or from programming
errors, such as numeric overflow or reference to an index that does not exist.
Standard Python exceptions are not described in this guide and are not listed as possible exceptions in the Abaqus

Scripting Reference Guide.

Look at the standard Python documentation on the official Python website (http://www.python.org) for a list of standard
Python exceptions. Standard exceptions are described in the Built-in Exceptions section of the Python
Library Reference.

Abaqus Scripting User's Guide78

Standard Python exceptions

Standard Abaqus Scripting Interface exceptions

Standard Abaqus Scripting Interface exceptions arise from errors in a script that relate to Abaqus/CAE.
The standard Abaqus Scripting Interface exceptions that can be raised by a method are listed with each command in
the Abaqus Scripting Reference Guide.

The standard Abaqus Scripting Interface exception types are listed below:

InvalidNameError

You specified an invalid name. Abaqus/CAE enforces a naming convention for objects that you create. Names
must adhere to the following rules:

• Part, model, instance, set, surface, feature, and job names can have up to 80 characters; other object names
can have up to 38 characters. Instance names of models that have been instantiated as model instances in
another model still have a 38-character limit. For imported sets/surfaces, parts, and model instances, the
names are generated internally in Abaqus/CAE by combining part/instance/set names. You must ensure that
the combined length will not exceed 80 characters; otherwise, the data check analysis will fail.

• The name can include spaces and most punctuation marks and special characters; however, only 7-bit ASCII
characters are supported.

Warning:

While Python allows most punctuation marks and special characters, some of the strings you provide
will be used in an Abaqus input file; therefore, you cannot use the following characters:
$&*~!()[]{}|;'`",.?/\ when you are naming an object, such as a part, a model or a job.

• The name must not begin with a number.

• The name must not begin or end with an underscore or a space.

• The name must not contain a period or a double quote.

RangeError

A numeric value is out of range.

AbaqusError

Context-dependent message.

AbaqusException

Context-dependent message.

Note:

The command descriptions in the Abaqus Scripting Reference Guide list the type of standard Abaqus Scripting
Interface exceptions that can occur; however, the exception messages are not included with the command
description.

79

Standard Abaqus Scripting Interface exceptions

Additional Abaqus Scripting Interface exceptions

Each command in the Abaqus Scripting Reference Guide lists the standard Abaqus Scripting Interface exceptions that
can be raised by a command. In addition, if the exception is not a standard Python or Abaqus Scripting Interface
exception, the description lists the following:

• A brief description of the problem.

• The exception type.

• The exception message.

For example, Figure 1 shows the layout of a typical exception description in the online documentation.

Exception type

Exception message

Standard Abaqus

Scripting Interface exception

Additional

exception

Figure 1:The layout of a typical exception description in the online documentation.

You use the exception type in your error handling routines.

Abaqus Scripting User's Guide80

Additional Abaqus Scripting Interface exceptions

Exception handling

The Python exception handling techniques described in Error handling apply to the Abaqus Scripting Interface. You
should use the command description in the Abaqus Scripting Reference Guide to decide for which exception types you
need to account. For example, the following Abaqus Scripting Interface script attempts to create a viewport and prints
a message if the width or height are too small:

try:
 session.Viewport(name='tiny',width=1, height=1)
except RangeError as message:
 print('Viewport too small:', message)
print('Script continues running and prints this line')

The resulting output is

Viewport too small: width must be a Float >= 30
Script continues running and prints this line

The exception has been handled, and the script continues.

81

Exception handling

Extending the Abaqus Scripting Interface

You can extend the functionality of the Abaqus Scripting Interface by writing your own modules that contain
classes and functions to accomplish tasks that are not directly available in Abaqus.
For example, you can write a function to print the names of all materials that have a density specified, or you
can write a function that creates a contour plot using a custom set of contour plot options. Creating functions
and modules in Python is described in Creating functions and Functions and modules.

This section describes how you can extend the functionality of the Abaqus Scripting Interface.

In this section:

• Storing custom data in the model database or in other objects

• Interaction with the GUI

• CommandRegister class

• Repositories

• Repository methods

• RepositorySupport

• Registered dictionaries

• Registered lists

• Registered tuples

• Session data

• Saving application data in a model database

• Checking a model database when it is opened

Abaqus Scripting User's Guide82

Storing custom data in the model database or in other objects

If you extend the kernel functionality by writing your own classes and functions, you may want to store data required
by those classes or functions in the Abaqus/CAE model database so the data are available the next time you open the
database.
To store custom kernel data in the Abaqus/CAE model database, you must make use of the customKernel module.
The customKernel module augments the mdb object with a member called customData. When you save a model
database, Abaqus/CAE also saves any data created below the customData object.

For example,

import customKernel
mdb = Mdb()
mdb.customData.myString = 'The width is '
mdb.customData.myNumber = 58
mdb.saveAs('custom-test.cae')
mdb.close()

If you start a new session and open the model database, custom-test.cae, you can refer to the variables that you
saved. For example,

>>> import customKernel
mdb = openMdb('custom-test.cae')
>>> print(mdb.customData.myString, mdb.customData.myNumber)
The width is 58

You can store almost any type of Python object under mdb.customData; for example, strings, numbers, and Python
classes. However, there are some restrictions; for example, you cannot store file objects. These restrictions are due to
the fact that the Abaqus/CAE infrastructure uses Python’s pickle module to store the customData object in the model
database. The pickle module allows the Python programmer to write a data structure to a file and then recreate that
data structure when reading from the file. For details on the restrictions imposed by the pickle module, see the
official Python website (http://www.python.org).

If your code creates a custom class and stores an instance of the class in the model database, the custom module that
defined that custom class must be available for Python to unpickle the data when the database is subsequently opened.
Consequently, if a user saves custom data to a model database and then passes that model database to another user,
the other user must also have access to the custom modules that produced the custom data. Otherwise, they will not
be able to load the custom data into their Abaqus/CAE session.

Abaqus/CAE does not keep track of changes made to the customData object. As a result, when the user quits a session,
Abaqus/CAE will not prompt them to save their changes if they changed only objects under customData.

83

Storing custom data in the model database or in other objects

Interaction with the GUI

In addition to providing a persistence mechanism, the customKernel module contains classes that provide the
following capabilities:

• Querying custom kernel data values from the GUI. From a GUI script you can access some attribute of your custom
kernel object, just as you would from the kernel. For example,

print(mdb.customData.myObject.name)

• Notification to the GUI when custom kernel data change. For example, you can have a manager dialog box that
lists the objects in a repository. When the contents of the repository change, you can be notified and take the
appropriate action to update the list of objects in the manager dialog box.

To make use of these features, you must derive your custom kernel objects from the classes listed in the following
sections. For more details on GUI customization, see the Abaqus GUI Toolkit Reference Guide.

Abaqus Scripting User's Guide84

Interaction with the GUI

CommandRegister class

You can use the CommandRegister class to derive a general class that can be queried from the GUI. In addition, the
class can notify the GUI when its contents change. For example,

 class Block(CommandRegister):
 def __init__(self, name, ...):
 CommandRegister.__init__(self)
 ...

If a query is registered by the GUI on an instance of this class, the GUI will be notified when a member of this instance
is changed, added, or deleted, For more details on registering queries, see the Abaqus GUI Toolkit Reference Guide.

If your object is to be stored in a repository (see below), the first argument to the constructor must be a string representing
the name of the object. That string will automatically be assigned by the infrastructure to a member called name.

85

CommandRegister class

Repositories

Repositories are containers that hold objects that are keyed by strings. It may be convenient to store your custom kernel
objects in repositories, in the same way that Abaqus/CAE part objects are stored in the Parts repository.

The customData object is an instance of a RepositorySupport class, which provides a Repository method
that allows you to create a repository as an attribute of the instance. For more information, see RepositorySupport. The
arguments to the Repository method are the name of the repository and a constructor or a sequence of constructors.
Those constructors must have name as their first argument, and the infrastructure will automatically assign that value
to a member called name. Instances of these constructors will be stored in the repository. For more information, see
Repository object.

Since repositories are designed to notify the GUI when their contents change, the objects placed inside them should
be derived from either CommandRegister or RepositorySupport to extend this capability to its fullest.

The Abaqus Scripting Interface uses the following conventions:

• The name of a repository is a plural noun with all lowercase letters.

• A constructor is a capitalized noun (or a combination of capitalized nouns and adjectives).

• The first argument to the constructor must be name.

For example, the Part constructor creates a part object and stores it in the parts repository. You can access the part
object from the repository using the same name argument that you passed in with the Part constructor. In some cases,
more than one constructor can create instances that are stored in the same repository. For example, the
HomogeneousSolidSection and the HomogeneousShellSection constructors both create section objects that are stored
in the sections repository. For more information, see Abstract base type. For example, the following script creates a
blocks repository, and the Block constructor creates a block object in the blocks repository:

from customKernel import CommandRegister
class Block(CommandRegister):
 def __init__(self, name):
 CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
block = mdb.customData.Block(name='Block-1')
print(mdb.customData.blocks['Block-1'].name)
Block-1

Abaqus Scripting User's Guide86

Repositories

Repository methods

Repositories have several useful methods for querying their contents, as shown in the following table:

DescriptionMethod

Returns a list of the keys in the repository.keys()

Returns 1 if the key is found in the repository; otherwise, returns 0.has_key()

Returns a list of the objects in the repository.values()

Returns a list of key, value pairs in the repository.items()

Changes the name of a key in the repository. This method will also change the name attribute
of the instance in the repository.

changeKey(fromName, toName)

The following script illustrates some of these methods:

from customKernel
import CommandRegister
class Block(CommandRegister):
 def __init__(self, name):
 CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
mdb.customData.Block(name='Block-1')
mdb.customData.Block(name='Block-2')
print('The original repository keys are: ',
 mdb.customData.blocks.keys())
print(mdb.customData.blocks.has_key('Block-2'))
print(mdb.customData.blocks.has_key('Block-3'))
mdb.customData.blocks.changeKey('Block-1', 'Block-11')
print('The modified repository keys are: ',
 mdb.customData.blocks.keys())
print('The name member is ',
 mdb.customData.blocks['Block-11'].name)
print('The repository size is', len(mdb.customData.blocks))

The resulting output is

The original repository keys are ['Block-1', 'Block-2']
1
0
The modified repository keys are ['Block-11', 'Block-2']
The name member is Block-11
The repository size is 2

87

Repository methods

RepositorySupport

You can use the RepositorySupport class to derive a class that can contain one or more repositories. However,
if you do not intend to create a repository as an attribute of your class, you should derive your class from
CommandRegister, not from RepositorySupport.

Using the RepositorySupport class allows you to create a hierarchy of repositories; for example, in the Abaqus
Scripting Interface the parts repository is a child of the models repository. The first argument passed into your constructor
is stored as name; it is created automatically by the infrastructure. To create a hierarchy of repositories, derive your
class from RepositorySupport and use its Repository method to create child repositories as shown below.
The Repository method is described in Repositories.

from abaqus import *
from customKernel import CommandRegister, RepositorySupport
class Block(CommandRegister):
 def __init__(self, name):
 CommandRegister.__init__(self)

class Model(RepositorySupport):
 def __init__(self, name):
 RepositorySupport.__init__(self)
 self.Repository('blocks', Block)

mdb.customData.Repository('models', Model)
mdb.customData.Model('Model-1')
mdb.customData.models['Model-1'].Block('Block-1')

The path to the object being created can be found by calling repr(self) in the constructor of your object.

Abaqus Scripting User's Guide88

RepositorySupport

Registered dictionaries

You use the RegisteredDictionary class to create a dictionary that can be queried from the GUI. In addition,
the infrastructure can notify the GUI when the contents of the dictionary change. The key of a registered dictionary
must be either a String or an Int. The values associated with a key must all be of the same type—all integers or all
strings, for example—to prevent errors when accessing them from the GUI. The RegisteredDictionary class
has the same methods as a Python dictionary. In addition, the RegisteredDictionary class has a changeKey
method that you use to rename a key in the dictionary. For example,

from customKernel import RegisteredDictionary
mdb.customData.myDictionary = RegisteredDictionary()
mdb.customData.myDictionary['Key-1'] = 1
mdb.customData.myDictionary.changeKey('Key-1', 'Key-2')

89

Registered dictionaries

Registered lists

You use the RegisteredList class to create a list that can be queried from the GUI. In addition, the infrastructure
can notify the GUI when the contents of the list change. The values in the list must all be of the same type—all integers
or all strings, for example—to prevent errors when accessing them from the GUI. The values must all be of the same
type; for example, all integers or all strings. The RegisteredList has the same methods as a Python list. For
example, appending Item-1 to the list in the following statements causes the infrastructure to notify the GUI that
the contents of the list have changed:

from customKernel import RegisteredList
mdb.customData.myList = RegisteredList()
mdb.customData.myList.append('Item-1')

Abaqus Scripting User's Guide90

Registered lists

Registered tuples

You use the RegisteredTuple class to create a tuple that can be queried from the GUI. In addition, the infrastructure
can notify the GUI when the contents of any of the members of the tuple change. The members in the tuple must derive
from the CommandRegister class, and the values in the tuple must all be of the same type; for example, all integers
or all strings. For example,

from abaqus import *
from customKernel import CommandRegister, RegisteredTuple
class Block(CommandRegister):
 def __init__(self, name):
 CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
block1 = mdb.customData.Block(name='Block-1')
block2 = mdb.customData.Block(name='Block-2')
tuple = (block1, block2)
mdb.customData.myTuple = RegisteredTuple(tuple)

91

Registered tuples

Session data

The customKernel module also provides a session.customData object that allows you to store data on the session
object and query it from the GUI. Data stored on the session object persist only for the current Abaqus/CAE session.
When you close the Abaqus/CAE session, Abaqus does not store any of the data below session.customData on
the model database. As a result, these data will be lost, and you will not be able to retrieve these data when you start
a new session and open the model database. The session object is useful for maintaining data relevant to the current
session only, such as the current model or output database.

The same methods and classes that are available for mdb.customData are available for session.customData.

Abaqus Scripting User's Guide92

Session data

Saving application data in a model database

If you have custom kernel scripts that store data in a model database, you may want to store information about your
application in the same model database. When the model database is opened subsequently, you can access this information
and decide how to proceed. For example, you can store version information and check if you need to upgrade your
data in the model database.

You use the appData object to store custom application-related data in the model database. The appData object is an
instance of an AbaqusAppData class. You can add any attributes to the appData object that are necessary to track
information about your custom application. The following example illustrates how you can store the version number
of your application on the appData object:

import customKernel
myAppData = customKernel.AbaqusAppData()
myAppData.majorVersion = 1
myAppData.minorVersion = 2
myAppData.updateVersion = 3

You use the setAppData method to install an appData object as session.customData.appData and to associate it
with your application name. For example:

myAppName = 'My App'
customKernel.setAppData(myAppName, myAppData)

You can call the setAppData method only once per application name, which prevents unauthorized changes to the
method. However, the setAppData method may be called multiple times using different application names to allow
more than one application to register with the same model database.

When the user saves a model database, Abaqus copies the session.customData.appData object to the
mdb.customData.appData object.

93

Saving application data in a model database

Checking a model database when it is opened

If you have custom kernel scripts that use custom data in a model database, you may want your application to verify
some of the contents of a model database before it is fully opened. For example, you may want to check the database
to see if you need to upgrade the data that is stored in it. In addition, you may need to initialize a new model database
with your custom data. Two methods are provided for verifying and initializing a model database: verifyMdb and
initializeMdb.

Verifying a model database

The verifyMdb method is used to verify the partial contents of a model database when it is opened. You must
write the verifyMdb method and install it using the setVerifyMdb method. You can call the
setVerifyMdb method only once per application name, which prevents unauthorized changes to the method.
However, the setVerifyMdb method may be called multiple times using different application names to allow
more than one application to register with the same model database.

When Abaqus opens a model database, its first action is to load only the mdb.customData.appData object and
pass that object to each verifyMdb method registered in the session. If the model database has no appData,
then Abaqus passes None to each verifyMdb method. Inside your verifyMdb method you can query the
appData object to determine if you need to take any action, such as upgrading your data.

Initializing a model database

If a script creates a new model database, you can initialize the model database with your custom objects using
the initializeMdb method. Abaqus calls each initializeMdb method registered with the session
whenever a new model database is created. You must write the initializeMdb method and install it using
the setInitializeMdb method. You can call the setInitializeMdb method only once per application
name, which prevents unauthorized changes to the method. However, the setInitializeMdb method may
be called multiple times using different application names to allow more than one application to register with
the same model database.

Kernel initialization scripts specified by the startup command line option are executed by Abaqus/CAE after it has
finished its initialization process. By that time, a new model database or a database specified on the command line
using the database option has already been opened. A utility method called processInitialMdb has been created
to automatically process the initial model database for you. If the initial model database does not have any customData

or does not have customData for your particular application, your initializeMdb method will be called. If the
initial model database has customData for your application, your verifyMdb method will be called.

The following example shows how you can use the verifyMdb, intializeMdb, and processInitialMdb
methods. You should execute the example using the startup command line option when you start Abaqus/CAE. For
more information, see Abaqus/CAE Execution.

from abaqus import mdb, session
import customKernel
myAppName = 'My App'
myAppData = customKernel.AbaqusAppData()
myAppData.majorVersion = 1
myAppData.minorVersion = 1
myAppData.updateVersion = 1
customKernel.setAppData(myAppName, myAppData)
#~~~
def verifyMdb(mdbAppData):
 # If there is no appData, initialize the MDB.
 #
 if mdbAppData==None:
 initializeMdb()
 return

Abaqus Scripting User's Guide94

Checking a model database when it is opened

 # If my application is not in appData, initialize the MDB.
 #
 if not mdbAppData.has_key(myAppName):
 initializeMdb()
 return

 # Perform any checks on the appData or customData here

Set the verifyMdb method for the application.
setVerifyMdb may be called only once per application name.
#
customKernel.setVerifyMdb(myAppName, verifyMdb)

#~~
def initializeMdb():
 # Initialize the MDB here

Set the initializeMdb method for this application.
setInitializeMdb may be called only once per application name.
#
customKernel.setInitializeMdb(myAppName, initializeMdb)

This file is executed after Abaqus/CAE has started, so we need to
process the initial MDB (either a new, empty MDB created by Abaqus/CAE,
or a database opened via the -database command line argument).
#
customKernel.processInitialMdb(myAppName)

95Abaqus Scripting User's Guide

Checking a model database when it is opened

Using the Abaqus Scripting Interface with Abaqus/CAE

This section discusses how you can use the Abaqus Scripting Interface to control Abaqus/CAE models and
analysis jobs.

In this section:

• The Abaqus object model

• Copying, deleting, and renaming Abaqus Scripting Interface objects

• Abaqus/CAE sequences

• Namespace

• Specifying what is displayed in the viewport

• Specifying a region

• Prompting the user for input

• Interacting with Abaqus/Standard and Abaqus/Explicit

• Using Abaqus Scripting Interface commands in your environment file

Abaqus Scripting User's Guide96

The Abaqus object model

We have already discussed how Python provides built-in objects like integers, lists, dictionaries, and strings.
When you are writing Abaqus Scripting Interface scripts, you need to access these built-in objects together with
the objects used by Abaqus/CAE. These Abaqus Scripting Interface objects extend Python with new types of
objects. The hierarchy and the relationship between these objects is called the Abaqus object model. The following
sections describe the Abaqus object model in more detail.

In this section:

• About the Abaqus object model

• Using tab completion to explore the object model

• The Model object model

• Using the object model

• Abstract base type

• Importing modules to extend the object model

97

About the Abaqus object model

The object model is an important concept in object-oriented programming. The object model consists of the following:

• A definition of each Abaqus Scripting Interface object including its methods and data members. The object definitions
are found in the Abaqus Scripting Reference Guide.

• Definitions of the relationships between the objects. These relationships form the structure or the hierarchy of the
object model. The relationships between the objects are summarized in the following list:

Ownership

The ownership hierarchy defines the access path to the objects in the Abaqus model.

Associations

Associations describe the relationships between the objects; for example, whether one object refers to another
and whether an object is an instance of another.

Abaqus extends Python with approximately 500 additional objects, and there are many relationships between these
objects. As a result, the complete Abaqus object model is too complex to illustrate in a single figure.

In general terms the Abaqus object model is divided into the Session, the Mdb, and the Odb objects, as shown in Figure

1.

mdb

jobs

models

parts

sketches

 = Container

 = Singular object

viewports

session

rootAssembly

odb

fieldReportOptions

parts

sectionCategories

steps

Model

Figure 1:The Abaqus object model.

An object in the object model can be one of the following:

Container

A Container is an object that contains objects of a similar type. A container in the Abaqus object model can
be either a repository or a sequence. For example, the steps container is a repository that contains all the steps
in the analysis. Your scripts use the steps container to access a step.

Abaqus Scripting User's Guide98

About the Abaqus object model

Singular object

Objects that are not containers are shown as a Singular object. A singular object contains no other objects
of a similar type; for example, the Session object and the Mdb object. There is only one Session object and only
one Mdb object in the Abaqus object model.

The “...” at the end of the object models shown in this section indicates that there are additional objects in the model
that are not included in the figure. For clarity, the figures show only the most commonly used objects in the object
model.

The statement from abaqus import * imports the Session object (named session) and the Mdb object (named
mdb) and makes them available to your scripts. The statement from odbAccess import * allows you to access
Abaqus output results from your script. The Session, Mdb, and Odb objects are described as follows:

Session

Session objects are objects that are not saved between Abaqus/CAE sessions; for example, the objects that define
viewports, remote queues, and user-defined views, as shown in Figure 2.

odbs

defaultOdbDisplay

displayGroups

colors

printOptions

xyReportOptions

sketcherOptions

defaultViewportAnnotationOptions

epsOptions

pngOptions

tiffOptions

aviOptions

animationController

probeOptions

probeReport

selectedProbeValues

psOptions

queues

views

paths

viewports

fieldReportOptions

xyDataObjects

xyPlots

 = Container

 = Singular object

session

Figure 2:The Session object model.

99Abaqus Scripting User's Guide

About the Abaqus object model

The viewports container is owned by the Session object, as shown in Figure 3.

assemblyDisplay

displayedObject

odbDisplay

partDisplay

view

viewportAnnotationOptions

viewports

 = Container

 = Singular object

session

Viewport

displayMode

Figure 3:The Viewport object model.

Mdb

The statement from abaqus import * creates an instance of the Mdb object called mdb. Mdb objects are
objects that are saved in a model database and can be recovered between Abaqus/CAE sessions. Mdb objects
include the Model object and the Job object. The Model object, in turn, is comprised of Part objects, Section
objects, Material objects, Step objects, etc. Figure 4 shows the basic structure of the objects under the Model
object. For more information, see The Model object model.

historyOutputReqests

Model

adaptivemeshControls

amplitudes

boundaryConditions

constraints

interactions

interactionProperties

loads

materials

parts

profiles

rootAssembly

sections

sketches

steps

 = Container

 = Singular object

fieldOutputReqests

models

Figure 4:The structure of the objects under the Model object.

Odb

Odb objects are saved in an output database and contain both model and results data, as shown in Figure 5.

Abaqus Scripting User's Guide100

About the Abaqus object model

parts

steps

fieldOutputs

historyPoints

historyOutputs

 = Container

 = Singular object

odb
rootAssembly

sectionCategories

Step

historyRegions

frames

HistoryRegion

Frame

Figure 5:The Odb object model.

Most of the commands in the Abaqus Scripting Interface begin with either the Session, the Mdb, or the Odb object.
For example,

session.viewports['Viewport-1'].bringToFront()
mdb.models['wheel'].rootAssembly.regenerate()
stress = odb.steps['Step-1'].frames[3].fieldOutputs['S']

101Abaqus Scripting User's Guide

About the Abaqus object model

Using tab completion to explore the object model

You can use tab completion from the command line interface to speed up your typing and to explore the object model.
For example, you can type mdb.models['Model-1'].parts[in the command line interface. When you press
the [Tab] key, the command line cycles through the parts in the model. When you press [Shift][Tab], the command
line cycles backwards through the parts in the model.

Tab completion also searches the file system when it detects an incomplete string. For example,

from part import THR[Tab]
from part import THREE_D

openMdb('hinge_t[Tab]
openMdb('hinge_tutorial.mdb')

from odbAccess import *
myOdb=openOdb('vi[Tab]
myOdb=openOdb('viewer_tutorial.odb')

In most cases when you type in a constructor or a method and include the opening parenthesis, tab completion prompts
you to provide a value for a keyword argument. For example,

mdb.models['Model-1'].Part([Tab]
mdb.models['Model-1'].Part(name=

When you press the [Tab] key, the command line cycles through the arguments to the method.

You can use tab completion when you are accessing an output database. For example,

p=myOdb.parts[[Tab]
p=myOdb.parts['Part-1']

You can also use tab completion when you are accessing an output database from the AbaqusPython prompt. For
example,

abaqus python
>>>from odbAccess import *
>>>myOdb=openOdb('viewer_tutorial.odb')
>>>p=myOdb.parts[[Tab]
>>>p=myOdb.parts['Part-1']

Abaqus Scripting User's Guide102

Using tab completion to explore the object model

The Model object model

The Model object contains many objects. Figure 1 and Figure 2 show the most commonly used objects that are contained
in the Part and RootAssembly.

parts

features

datums

cells

faces

edges

vertices

elements

nodes

referencePoints

sets

reinforcements

 = Container

 = Singular object

Part

models

Figure 1:The Part object model.

103

The Model object model

models

features

datums

surfaces

sets

instances

datums

cells

faces

edges

vertices

elements

nodes

 = Container

 = Singular object

rootAssembly

referencePoints

PartInstance

sets

Figure 2:The RootAssembly object model.

The Job object is separate from the Model object. The object model for the Job object is straightforward; the Job object
owns no other objects. The Job object refers to a Model object but is not owned by the Model object.

Abaqus Scripting User's Guide104

The Model object model

Using the object model

Object model figures such as Figure 4 provide important information to the Abaqus Scripting Interface programmer.

• The object model describes the relationships between objects. For example, in object-oriented programming terms
a geometry object, such as a Cell, Face, Edge, or Vertex object, is said to be “owned” by the Part object. The Part
object, in turn, is owned by the Model object. This ownership relationship between objects is referred to as the
ownership hierarchy of the object model.

Ownership implies that if an object is copied, everything owned by that object is also copied. Similarly, if an object
is deleted, everything owned by the object is deleted. This concept is similar to parent-child relationships in
Abaqus/CAE. If you delete a Part, all the children of the part—such as geometry, datums, and regions—are also
deleted.

• The relationships between objects are described in the Path and Access descriptions in the command reference.
For example, the following statement uses the path to a Cell object:

cell4 = mdb.models['block'].parts['crankcase'].cells[4]

The statement mirrors the structure of the object model. The Cell object is owned by a Part object, the Part object
is owned by a Model object, and the Model object is owned by the Mdb object.

• The associations between the objects are captured by the object model. Objects can refer to other objects; for
example, the section objects refer to a material, and the interaction objects refer to a region, to steps, and possibly
to amplitudes. An object that refers to another object usually has a data member that indicates the name of the
object to which it is referring. For example, material is a member of the section objects, and createStepName is a
member of the interaction objects.

105

Using the object model

Abstract base type

The Abaqus object model includes the concept of an abstract base type. An abstract base type allows similar objects
to share common attributes. For example, pressure and concentrated force are both kinds of loads. Object-oriented
programmers call the relationship between pressure and load an “is a” relationship—a pressure is a kind of load. In
this example “Load” is the name of the abstract base type. In the type hierachy Pressure and ConcentratedForce types
have a base type Load. A Pressure “is a” Load.

In Figure 1 AnalysisStep and Step are both abstract base types. In terms of the real world a static step is an analysis
step and a static step is also a step. In terms of the object model a StaticStep object is an AnalysisStep object and a
StaticStep object is also a Step object.

Step

InitialStep AnalysisStep

StaticStep BuckleStep
Figure 1: An example of the “is a” relationships between objects.

In contrast the object model figures described at the beginning of this section show what object-oriented programmers
call “has a” relationships between objects. For example, a session has a viewport repository, and a model has a root
assembly.

Abaqus uses the name of the abstract base type as the name of the repository that contains objects of similar types. For
example, the StaticStep, BuckleStep, and FrequencyStep constructors all create objects in the steps repository. Other
abstract base types include Amplitude, BoundaryCondition, Datum, Field, Interaction, and Section.

The term “abstract” implies that the Abaqus object model does not contain an object that has the type of an abstract
base type. For example, there are no objects of type Load or Step in the Abaqus object model. In contrast, the Feature
object is a base type, but it is not abstract. The Abaqus object model includes Feature objects.

Abaqus Scripting User's Guide106

Abstract base type

Importing modules to extend the object model

To access the objects referred to by the Model object, such as Part and Section objects, Abaqus/CAE extends or
augments the object model by importing additional modules. For example, to create or access a Part object, Abaqus/CAE
needs to import the part module. Abaqus/CAE imports all the modules when you start a session. As a result the entire
object model is available to your scripts.

However, in some cases, your script may need to import a module; for example, to access a module constant, type, or
function. In addition, it is useful for you to know which module Abaqus/CAE imported to augment the object model
with a particular object. You have already seen the syntax to import a module:

import part
import section

In general, you should use the following approach to importing Abaqus modules:

import modulename

The description of an object in the Abaqus Scripting Reference Guide includes an Access section that describes which
module Abaqus/CAE imported to make the object available and how you can access the object from a command. After
Abaqus/CAE imports a module, all the objects associated with the module become available to you. In addition, all
the methods and members associated with each object are also available.

The following table describes the relationship between some of the modules in the Abaqus Scripting Interface and the
functionality of the modules and toolsets found in Abaqus/CAE:

Abaqus/CAE functionalityModule

The Assembly moduleassembly

The Datum toolsetdatum

The Interaction moduleinteraction

The Job modulejob

The Load moduleload

Materials in the Property modulematerial

The Mesh modulemesh

The Part modulepart

The Partition toolsetpartition

Sections in the Property modulesection

The Sketch modulesketch

The Step modulestep

The Visualization modulevisualization

The X–Y toolsetxyPlot

107

Importing modules to extend the object model

Copying, deleting, and renaming Abaqus Scripting Interface objects

The following section describes how you copy and delete Abaqus Scripting Interface objects.

In this section:

• Creating a copy of an object

• More on copying objects

• Deleting objects

• Renaming objects

Abaqus Scripting User's Guide108

Creating a copy of an object

Most Abaqus objects have a method that creates a copy of the object. The same command provides the name of the
new object. Methods that create a copy of an object are called copy constructors. Although copy constructors exist for
most objects, in most cases they are not documented in the Abaqus Scripting Reference Guide. The format of a copy
constructor is

ObjectName(name='name', objectToCopy=objectToBeCopied)

A copy constructor returns an object of the type of objectToBeCopied with the given name. For example, the following
statements show you can create a Part object and then use a copy constructor to create a second Part object that is a
copy of the first:

firstBolt = mdb.models['Metric'].Part(
 name='boltPattern', dimensionality=THREE_D,
 type=DEFORMABLE_BODY)
secondBolt = mdb.models['Metric'].Part(
 name='newBoltPattern', objectToCopy=firstBolt)

You can also use the copy constructor to create a new object in a different model.

firstBolt = mdb.models['Metric'].Part(
 name='boltPattern', dimensionality=THREE_D,
 type=DEFORMABLE_BODY)
secondBolt = mdb.models['SAE'].Part(
 name='boltPattern', objectToCopy=firstBolt)

109

Creating a copy of an object

More on copying objects

To create a copy of an object, some objects use the base type described in Abstract base type. For example, to copy a
HomogeneousSolidSection object, you use the abstract base type Section constructor.

import material
import section
impactModel = mdb.Model(name='Model A')
mySteel = impactModel.Material(name='Steel')

Create a section

firstSection = impactModel.HomogeneousSolidSection(
 name='steelSection 1', material='Steel',
 thickness=1.0)

Copy the section

secondSection = impactModel.Section(
 name='steelSection 2', objectToCopy=firstSection)

Abaqus Scripting User's Guide110

More on copying objects

Deleting objects

In general, if you can create an object, you can delete the object. For example, the following statements create a Material
object in the material repository:

myMaterial = mdb.models['Model-1'].Material(name='aluminum')

You can use the Python del statement to delete an object, but you must provide the full path to the object.

del mdb.models['Model-1'].materials['aluminum']

The variable myMaterial that referred to the object still exists; however, the variable no longer refers to the object.
You can use the del statement to delete the variable.

del myMaterial

Conversely, if you create the object as before but delete the variable that referred to the object, only the variable is
deleted; the object still exists. You can assign a new variable to the object.

myMaterial = mdb.models['Model-1'].Material(name='aluminum')
del myMaterial
myNewMaterial = mdb.models['Model-1'].materials['aluminum']

The previous explanation does not apply to the few Abaqus/CAE objects that are not members of either an Mdb object
or a Session object; for example, XYData and Leaf objects. These objects are sometimes referred to as “temporary,”
and the delete semantics for these objects are the same as for standard Python objects. The object exists as long as
there is a reference to it. If you delete the reference, the object is also deleted.

111

Deleting objects

Renaming objects

When you rename an object, variables that refer to that object may become stale, depending on the implementation
detail of that object interface. It is always best to create new variables after you rename an object.

Abaqus Scripting User's Guide112

Renaming objects

Abaqus/CAE sequences

Some methods take arguments that are described as “a sequence of sequences of Floats” or “a sequence of sequences
of Ints.”
Data that are entered into the table editor in Abaqus/CAE appear as a sequence of sequences in the equivalent Abaqus
Scripting Interface command. In effect the data are a two-dimensional array. The data across one row form one sequence,
and multiple rows form a sequence of those sequences.

For example, consider the case where the user is creating an elastic material and describing a temperature-dependent
behavior.

The equivalent Abaqus Scripting Interface command is

mdb.models['Model-1'].materials['steel'].Elastic(
 temperatureDependency=True, table=(
 (200.0E9, 0.3, 0.0),
 (210.0E9, 0.3, 100.0),
 (220.0E9, 0.3, 250.0),
 (225.0E9, 0.3, 500.0)))

The table argument is described in the Abaqus Scripting Reference Guide as a sequence of sequences of Floats.

Lists, tuples, strings, and arrays are described in Sequences. In addition, the Abaqus Scripting Interface defines some
of its own sequences that contain objects of the same type.

GeomSequence

A GeomSequence is a sequence of geometry objects, such as Vertices or Edges. An Edge sequence is derived
from the GeomSequence object. Use the len() function to determine the number of objects in a
GeomSequence. A GeomSequence has methods and members too.

For example, the following creates a three-dimensional part by extruding a 70 × 70 square through a distance
of 20. The members of the resulting Part object are listed along with some information about the sequence of
Edge objects.

mdb.Model('Body')
mySketch = mdb.models['Body'].ConstrainedSketch(
 name='__profile__', sheetSize=200.0)
mySketch.rectangle(point1=(0.0, 0.0),
 point2=(70.0, 70.0))
switch = mdb.models['Body'].Part(name='Switch',
 dimensionality=THREE_D, type=DEFORMABLE_BODY)
switch.BaseSolidExtrude(sketch=mySketch, depth=20.0)

The following statement displays the members of the resulting three-dimensional part:

>>> print(mdb.models['Body'].parts['Switch'].__members__)
['allInternalSets', 'allInternalSurfaces', 'allSets',
'allSurfaces', 'cell', 'cells', 'datum', 'datums', 'edge',
'edges', 'elemEdge', 'elemEdges', 'elemFace', 'elemFaces',

113

Abaqus/CAE sequences

'element', 'elements', 'engineeringFeatures', 'face',
'faces', 'feature', 'featureById', 'features',
'featuresById', 'geometryPrecision', 'geometryRefinement',
'geometryValidity', 'ip', 'ips', 'isOutOfDate', 'modelName',
'name', 'node', 'nodes', 'referencePoint', 'referencePoints',
'reinforcement', 'reinforcements', 'sectionAssignments',
'sets', 'space', 'surfaces', 'twist', 'type',
'vertex', 'vertices']

The edges, faces, vertices, cells, and ips members are all derived from the GeomSequence object.

The following statements display some information about the edges sequence:

>>> print 'Single edge type = ', type(switch.edges[0])
Single edge type = <type 'Edge'>

>>> print 'Edge sequence type = ', type(switch.edges)
Edge sequence type = <type 'EdgeArray'>

>>> print 'Members of edge sequence = ',
 switch.edges.__members__
Members of edge sequence = ['pointsOn']

>>> print 'Number of edges in sequence = ',
 len(switch.edges)
Number of edges in sequence = 12

MeshSequence

A sequence of Nodes or Elements.

SurfSequence

A sequence of Surfaces.

Abaqus Scripting User's Guide114

Abaqus/CAE sequences

Namespace

Namespace is an important concept for the Abaqus Scripting Interface programmer. A namespace can be thought of
as a program execution environment, and namespaces are independent of each other. Namespaces prevent conflict
between variable names. You can use the same variable name to refer to different objects in different name spaces.
Figure 1 illustrates how commands interact with the Abaqus/CAE kernel.

GUI

command
line

interface
(CLI)

script

Python
interpreter

replay
files

Abaqus/CAE
kernel

commands

input file

Abaqus/Standard
Abaqus/Explicit

output database

Abaqus/CAE

Abaqus/Design
Abaqus/CFD

Figure 1:The Abaqus Scripting Interface and the Abaqus/CAE kernel.

Abaqus Scripting Interface commands are issued to the Python interpreter from either the GUI, the command line
interface, or a script. Abaqus/CAE executes these commands in one of two namespaces.

Script namespace

Abaqus Scripting Interface commands issued from scripts and from the command line interface are executed in
the script namespace. Commands issued from File->Run Script are also executed in the script namespace. For
example, if you enter the following statement from the command line interface to create a viewport:

myViewport = session.Viewport(name='newViewport',
 width=100, height=100)

the variable myViewport exists only in the script namespace. The name of the script namespace is main.

115

Namespace

Journal namespace

Abaqus Scripting Interface commands issued by the GUI are executed in the journal namespace. For example,
if you use the GUI to partition an edge, Abaqus/CAE writes the following statements to the replay file,
abaqus.rpy:

p1 = mdb.models['Model A'].parts['Part 3D A']
e = p1.edges
edges =(e[23],)
p1.PartitionEdgeByParam(edges=edges, parameter=0.5)

The variables defined in the replay file (p1, e, and edges, in the above example) exist only in the journal
namespace. Abaqus/CAE issues an exception if you attempt to refer to one of these variables from the script
namespace. For example, the following statement was issued from the command line interface and tries to
partition the same edge:

p1.PartitionEdgeByParam(edges=edges, parameter=0.75)
NameError: p1

The name of the journal namespace is journaling.

The statement from abaqus import * described in Executing scripts imports the mdb variable into the script
namespace. You can then use the mdb variable in your scripts to access the objects in the object model. Although
variables in one namespace are not visible to the other namespace, the object repositories are now available in both.
As a result, an object created in one namespace can still be referred to in another namespace if you use its full path
(mdb.models['Model A']...) and its repository key.

For example, although the variable p1 in the above statement cannot be accessed from the script namespace, you can
still use the command line interface to access the part to which p1 referred.

myPart = mdb.models['Model A'].parts['Part 3D A']

The model and part repositories are available in both the journal and script namespaces. You can also create your own
variable p1 from the command line interface or from a script.

p1 = myPart

The variable p1 in the script namespace is independent of the variable p1 in the journal namespace.

Abaqus Scripting User's Guide116

Namespace

Specifying what is displayed in the viewport

While a script is running and moving between models, modules, parts, and assemblies, you can control the contents
of specified viewports. The contents can be one of the following:

• A part

• The assembly

• A sketch

• Data from an output database

• An X–Y plot

• Empty

In some cases you will want to update the contents of the viewport as the model changes; for example, to illustrate
how the assembly was partitioned prior to meshing. However, frequent updates to a viewport will slow down your
script, and you may want to leave the viewport empty until the script has completed. Alternatively, you can display
an object that the script is not operating on; for example, you can display a part while the script operates on the assembly.

You use the following command to change the contents of a specified viewport:

session.viewports[name].setValues(displayedObject=object)

The displayedObject argument can be a Part, Assembly, Sketch, Odb, or XYPlot object or None. If
displayedObject=None, Abaqus/CAE displays an empty viewport. For more information, see setValues(...).

117

Specifying what is displayed in the viewport

Specifying a region

Many of the commands used by the Abaqus Scripting Interface require a region argument. For example,

• Load commands use the region argument to specify where the load is applied. You apply a concentrated force to
vertices; you apply pressure to a face or an edge.

• Mesh commands, such as setting the element type and creating the mesh, use the region argument to specify where
the operation should be applied.

• Set commands use the region argument to specify the region that comprises the set.

A region can be either a predefined Set or Surface object or a temporary Region object. For more information, see
Region commands.

You should not rely on the integer id to identify a vertex, edge, face, or cell in a region command; for example,
myFace=myModel.parts['Door'].faces[3]. The id can change if you add or delete features to your model;
in addition, the id can change with a new release of Abaqus.

Rather than using the integer id, you should use the findAt method to identify a vertex, edge, face, or cell. The
arguments to findAt are an arbitrary point on an edge, face, or cell or the X-, Y-, and Z-coordinates of a vertex.
findAt returns an object that contains the id of the vertex or the id of the edge, face, or cell that includes the arbitrary
point.

findAt initially uses the ACIS tolerance of 1E-6. As a result, findAt returns any entity that is at the arbitrary point
specified or at a distance of less than 1E-6 from the arbitrary point. If nothing is found, findAt uses the tolerance
for imprecise geometry (applicable only for imprecise geometric entities). If necessary, it can open the tolerance further
to find a suitable object. The arbitrary point must not be shared by a second edge, face, or cell. If two entities intersect
or coincide at the arbitrary point, findAt chooses the first entity that it encounters, and you should not rely on the
return value being consistent.

Alternatively, if you are working with an existing model that contains named regions, you can specify a region by
referring to its name. For example, in the example described in Investigating the skew sensitivity of shell elements, you
create a model using Abaqus/CAE. While you define the model, you must create a set that includes the vertex at the
center of a planar part and you must name the set CENTER. You subsequently run a script that parameterizes the model
and performs a series of analyses. The script uses the named region to retrieve the displacement and the bending moment
at the center of the plate. The following statement refers to the set that you created and named using Abaqus/CAE:

centerNSet = odb.rootAssembly.nodeSets['CENTER']

The following script illustrates how you can create a region. Regions are created from each of the following:

• A sequence of tuples indicating the vertices, edges, faces, or cells in the region. The sequence can include multiple
tuples of the same type.

• A sequence of tuples indicating a combination of the vertices, edges, faces, and cells in the region. The tuples can
appear in any order in the sequence. In addition, you can include multiple tuples of the same type, and you can
omit any type from the sequence.

• A Surface object specifying an entity and the side of the entity.

Use the following command to retrieve the script:

abaqus fetch job=createRegions

"""
createRegions.py

Script to illustrate different techniques for defining regions.
"""

Import the modules used by this script.

Abaqus Scripting User's Guide118

Specifying a region

from abaqus import *
from abaqusConstants import *
import part
import assembly
import step
import load
import interaction

myModel = mdb.models['Model-1']

Create a new Viewport for this example.

myViewport=session.Viewport(name='Region syntax',
 origin=(20, 20), width=200, height=100)

Create a Sketch and draw two rectangles.

mySketch = myModel.ConstrainedSketch(name='Sketch A',
 sheetSize=200.0)

mySketch.rectangle(point1=(-40.0, 30.0),
 point2=(-10.0, 0.0))

mySketch.rectangle(point1=(10.0, 30.0),
 point2=(40.0, 0.0))

Create a 3D part and extrude the rectangles.

door = myModel.Part(name='Door',
 dimensionality=THREE_D, type=DEFORMABLE_BODY)

door.BaseSolidExtrude(sketch=mySketch, depth=20.0)

Instance the part.

myAssembly = myModel.rootAssembly
doorInstance = myAssembly.Instance(name='Door-1',
 part=door)

Select two vertices.

pillarVertices = doorInstance.vertices.findAt(
 ((-40,30,0),), ((40,0,0),))

Create a static step.

myModel.StaticStep(name='impact',
 previous='Initial', initialInc=1, timePeriod=1)

Create a concentrated force on the selected
vertices.

myPillarLoad = myModel.ConcentratedForce(
 name='pillarForce', createStepName='impact',
 region=(pillarVertices,), cf1=12.50E4)

Select two faces

topFace = doorInstance.faces.findAt(((-25,30,10),))
bottomFace = doorInstance.faces.findAt(((-25,0,10),))

119Abaqus Scripting User's Guide

Specifying a region

Create a pressure load on the selected faces.
You can use the "+" notation if the entities are of
the same type and are from the same part instance.

myFenderLoad = myModel.Pressure(
 name='pillarPressure', createStepName='impact',
 region=((topFace+bottomFace, SIDE1),),
 magnitude=10E4)

Select two edges from one instance.

myEdge1 = doorInstance.edges.findAt(((10,15,20),))
myEdge2 = doorInstance.edges.findAt(((10,15,0),))

Create a boundary condition on one face,
two edges, and two vertices.

myDisplacementBc= myModel.DisplacementBC(
 name='xBC', createStepName='impact',
 region=(pillarVertices, myEdge1+myEdge2,
 topFace), u1=5.0)

Select two faces using an arbitrary point
on the face.

faceRegion = doorInstance.faces.findAt(
 ((-30,15,20),), ((30,15,20),))

Create a surface containing the two faces.
Indicate which side of the surface to include.

mySurface = myModel.rootAssembly.Surface(
 name='exterior', side1Faces=faceRegion)

Create an elastic foundation using the surface.

myFoundation = myModel.ElasticFoundation(
 name='elasticFloor', createStepName='Initial',
 surface=mySurface, stiffness=1500)

Display the assembly along with the new boundary
conditions and loads.

myViewport.setValues(displayedObject=myAssembly)
myViewport.assemblyDisplay.setValues(step='impact',
 loads=ON, bcs=ON, fields=ON)

Abaqus Scripting User's Guide120

Specifying a region

Prompting the user for input

You may want to request input from a user while an Abaqus Scripting Interface script is executing.
There are many reasons for requesting input; for example, to specify design parameters, to enable a macro to
take action based on the input received, or to force parts of the script to be repeated. The Abaqus Scripting
Interface provides three functions that request input from the user and return the data entered by the user:

• The getInput function requests a single input from the user from a text field in a dialog box.

• The getInputs function requests multiple inputs from the user from text fields in a dialog box.

• The getWarningReply function requests a reply to a warning message from the user from a warning
dialog box.

Note: You cannot use a script that contains getInput, getInputs or getWarningReply if you
are running the script from the command line and passing the script name to the command line options
-start,-replay or -noGUI.

In this section:

• Requesting a single input from the user

• Requesting multiple inputs from the user

• Requesting a warning reply from the user

121

Requesting a single input from the user

The getInput function displays a dialog box in the center of the main window, and the user enters the requested
value in the text field in the dialog box. The value is returned to the executing script as a String after the user presses
the [Enter] key or clicks OK. Optionally, you can specify a default value to be displayed in the text field. The
getInput function does not provide any error checking; it is the script author's responsibility to verify the user input.
For more information, see getInput.

The following examples illustrate the use of the getInput function. The first example shows a script that uses the
getInput function to obtain a number from the user. The script then prints the square root of that number.

from abaqus import getInput
from math import sqrt
number = float(getInput('Enter a number:'))
print(sqrt(number))

The float function on the third line converts the string returned by getInput into a floating point number. The
following figure shows the dialog box that appears when this script is executed:

The next example shows how to modify a macro recorded by the Macro Manager in Abaqus/CAE to use the getInput
function. The following text shows a macro named createViewport that was recorded by Abaqus/CAE while the
user created a viewport. Macros are stored in the file abaqusMacros.py in your local or home directory.

from abaqus import *
def createViewport():
 session.Viewport(name='Viewport: 2',
 origin=(15.0,15.0), width=145.0,
 height=90.0)
 session.viewports['Viewport: 2'].makeCurrent()

The following shows how you can modify the macro to accept input from the user. Default values for the viewport
width and height have been added to the input request.

from abaqus import *
def createViewport():
 name = getInput('Enter viewport name:')
 prompt = 'Enter viewport width, height (mm):'
 w, h = eval(getInput(prompt, '100,50'))
 vp = session.Viewport(name=name, width=w, height=h)
 vp.restore()
 vp.makeCurrent()

The eval function in the third line of the macro converts the string returned by the getInput function into two
integers. When you supply the default values shown in this example to the getInput function, the prompt and the
text field in the dialog box that appears are shown in the following figure. If the user clicks OK or presses [Enter],
the default values are accepted and returned to the getInput function. If the user clicks Cancel, None is returned.

Abaqus Scripting User's Guide122

Requesting a single input from the user

123Abaqus Scripting User's Guide

Requesting a single input from the user

Requesting multiple inputs from the user

The getInputs function displays a dialog box in the center of the main window, and the user enters the requested
values in text fields in the dialog box. The values are returned to the executing script as a sequence of Strings after the
user clicks the OK button or presses [Enter]. Optionally, you can specify default values to be displayed in the text
fields. For more information, see getInputs.

The following examples illustrate the use of the getInputs function to obtain a sequence of numbers from the user:

from abaqus import getInputs
fields = (('Width:','10'), ('Length:', '20'), ('Height:', '30'))
length, width, height = \
 getInputs(fields=fields, label='Specify block dimensions:',
 dialogTitle='Create Block',)
print(length, width, height)

The following figure shows the dialog box that these statements create:

The fields argument to the getInputs method is a sequence of sequences of Strings. The inner sequence is a pair
of Strings that specifies the description of the text field and the default value of the field. If the text field does not have
a default value, you must specify an empty string; for example,

fields = (('Width',''), ('Length', ''), ('Height', ''))
length, width, height =
 getInputs(fields=fields, label='Specify block dimensions:')

The label argument to the getInputs method is an optional label that appears across the top of the dialog box. The
dialogTitle argument is an optional string that appears in the title bar of the dialog box.

If the user clicks Cancel, the getInputs method returns a sequence of None objects. You can check the first value
in the sequence to determine if the user clicked Cancel; for example:

fields = (('Density',''), ('Youngs modulus', ''))
density, modulus = getInputs(fields, 'Material properties')
if density == None:
 print 'User pressed Cancel'

Abaqus Scripting User's Guide124

Requesting multiple inputs from the user

Requesting a warning reply from the user

The getWarningReply function displays a warning dialog box in the center of the main window, and the user
clicks on one of the standard reply buttons in the dialog box. The clicked button value is returned to the executing
script. For more information, see getWarningReply.

The following example illustrates the use of the getWarningReply function:

from abaqus import getWarningReply, YES, NO

reply = getWarningReply(message='Okay to continue?', buttons=(YES,NO))
if reply == YES:
 print('YES clicked')
elif reply == NO:
 print('NO clicked')

The following figure shows the dialog box that appears when this script is executed:

125

Requesting a warning reply from the user

Interacting with Abaqus/Standard and Abaqus/Explicit

The Job commands include methods that allow you to submit jobs to Abaqus/Standard and Abaqus/Explicit.
This section describes how you can interact with Abaqus/Standard and Abaqus/Explicit and synchronize your
scripts with the analysis job.

In this section:

• Processing messages from Abaqus/Standard and Abaqus/Explicit

• Waiting for a job to complete

• An example of a callback function

Abaqus Scripting User's Guide126

Processing messages from Abaqus/Standard and Abaqus/Explicit

You can use the addMessageCallback method to associate an event-driven function with a particular message
that is retrieved from Abaqus/Standard or Abaqus/Explicit.
When Abaqus/CAE retrieves the specific message from Abaqus/Standard or Abaqus/Explicit, the function executes
and takes the necessary action. This type of function is called a callback function. The addMessageCallback
method specifies which callback function to use for which message.

The arguments to addMessageCallback are:

• The name of the job to monitor for messages.

• The message from Abaqus/Standard or Abaqus/Explicit that causes the callback function to execute.

• The name of the callback function.

• An object to pass to the callback function.

These arguments allow you to associate the callback function with both a particular job and a particular message.
Alternatively, you can associate the callback function with all jobs and all messages. The commands are described in
Messaging commands.

The interface definition of the callback function is

def functionName(jobName, messageType, data, userData)

The arguments to the callback function are:

• jobName: A String specifying the name of the job to be monitored. You can also use the SymbolicConstant
ANY_JOB that specifies that the callback function will monitor messages from all jobs.

• messageType: A SymbolicConstant specifying the message type that will call the callback function. You can also
use the SymbolicConstant ANY_MESSAGE_TYPE that specifies that all messages will call the callback function.
The following is a list of the message types issued by Abaqus/Standard and Abaqus/Explicit:

- ABORTED

- ANY_JOB

- ANY_MESSAGE_TYPE

- COMPLETED

- END_STEP

- ERROR

- HEADING

- HEALER_JOB

- HEALER_TYPE

- INTERRUPTED

- ITERATION

- JOB_ABORTED

- JOB_COMPLETED

- JOB_INTERRUPTED

- JOB_SUBMITTED

- MONITOR_DATA

- ODB_FILE

- ODB_FRAME

- SIMULATION_ABORTED

- SIMULATION_COMPLETED

- SIMULATION_INTERRUPTED

127

Processing messages from Abaqus/Standard and Abaqus/Explicit

- SIMULATION_SUBMITTED

- STARTED

- STATUS

- STEP

- WARNING

• data: A DataObject object containing the message data. The following list describes the members of the DataObject
object:

- clientHost: A String specifying the host name of the machine that is running the analysis.

- clientName: A String specifying the name of the client that sent the message. Possible values are

- “BatchPre” (the input file preprocessor)

- “Packager” (the Abaqus/Explicit preprocessor packager)

- “Standard” (the Abaqus/Standard analysis)

- “Explicit” (the Abaqus/Explicit analysis)

- “Calculator” (the postprocessing calculator)

- phase: A SymbolicConstant specifying the phase of the analysis. Possible values are

- BATCHPRE_PHASE

- PACKAGER_PHASE

- STANDARD_PHASE

- EXPLICIT_PHASE

- CALCULATOR_PHASE

- HEALER_PHASE

- processId: An Int specifying the process ID of the analysis program.

- threadId: An Int specifying the thread ID of the analysis program. Threads are used for parallel or multiprocessing;
in most cases threadId is set to zero.

- timeStamp: An Int specifying the time the message was sent in seconds since 00:00:00 UTC, January 1, 1970.

• userData: Any Python object or None. This object is passed as the userData argument to addMessageCallback.

The following script is an example of how you can use the messaging capability of the Abaqus Scripting Interface.
The callback function will intercept all messages from Abaqus/Standard or Abaqus/Explicit and print the messages in
the Abaqus/CAE command line interface. Use the following command to retrieve the example script:

abaqus fetch job=simpleMonitor

To execute the script, do the following:

• From the Abaqus/CAE command line interface type from simpleMonitor import printMessages

• Submit an analysis job as usual.

• To start printing the messages, type printMessages(ON) from the Abaqus/CAE command line interface.

• To stop printing the messages, type printMessages(OFF) from the Abaqus/CAE command line interface.

"""
simpleMonitor.py

Print all messages issued during an Abaqus;

Abaqus Scripting User's Guide128

Processing messages from Abaqus/Standard and Abaqus/Explicit

analysis to the Abaqus/CAE command line interface
"""

from abaqus import *
from abaqusConstants import *
from jobMessage import ANY_JOB, ANY_MESSAGE_TYPE

#~~~
def simpleCB(jobName, messageType, data, userData):
 """
 This callback prints out all the
 members of the data objects
 """

 format = '%-18s %-18s %s'

 print('Message type: %s'%(messageType))
 print()
 print('data members:')
 print(format%('member', 'type', 'value'))

 members = dir(data)
 for member in members:
 memberValue = getattr(data, member)
 memberType = type(memberValue).__name__
 print(format%(member, memberType, memberValue))

#~~~
def printMessages(start=ON):
 """
 Switch message printing ON or OFF
 """

 if start:
 monitorManager.addMessageCallback(ANY_JOB,
 ANY_MESSAGE_TYPE, simpleCB, None)
 else:
 monitorManager.removeMessageCallback(ANY_JOB,
 ANY_MESSAGE_TYPE, simpleCB, None)

129Abaqus Scripting User's Guide

Processing messages from Abaqus/Standard and Abaqus/Explicit

Waiting for a job to complete

You can use the Job object's waitForCompletion method to synchronize your script with a job that has been
submitted. If you call the waitForCompletion method after you submit a job, the script waits until the analysis
is complete before continuing. When the script continues, you should check the status of the job to ensure that the job
completed successfully and did not exit. For example, the script described in Reproducing the cantilever beam tutorial

uses waitForCompletion to ensure that the analysis job has finished executing successfully before the script opens
the resulting output database and displays a contour plot of the results.

In the following example, the script submits myJob1 and waits for it to complete before submitting myJob2.

myJob1 = mdb.Job(name='Job-1')
myJob2 = mdb.Job(name='Job-2')
myJob1.submit()
myJob1.waitForCompletion()
myJob2.submit()
myJob2.waitForCompletion()

If you submit more than one job and then issue a waitForCompletion statement, Abaqus waits until the job
associated with the waitForCompletion statement is complete before checking the status of the second job. If the
second job has already completed, the waitForCompletion method returns immediately. In the following example
the script will not check the status of myJob2 until myJob1 has completed.

myJob1 = mdb.Job(name='Job-1')
myJob2 = mdb.Job(name='Job-2')
myJob1.submit()
myJob2.submit()
myJob1.waitForCompletion()
myJob2.waitForCompletion()

Abaqus Scripting User's Guide130

Waiting for a job to complete

An example of a callback function

The following section describes how you can use a callback function as an alternative to the waitForCompletion
method described in Waiting for a job to complete. The example uses messaging commands to synchronize a script
with an Abaqus/Standard or Abaqus/Explicit analysis. Messaging commands set up a callback function that monitors
messages from Abaqus/Standard and Abaqus/Explicit. When the desired message is received, the callback function
executes.

The example uses a callback function that responds to all messages from Abaqus/Standard and Abaqus/Explicit. The
function decides what action to take based on the messages received from a job called Deform. If the message indicates
that the analysis job is complete, the function opens the output database created by the job and displays a default contour
plot.

#~~
Define the callback function

from __future__ import print_function
from abaqus import *
from abaqusConstants import *

import visualization

def onMessage(jobName, messageType, data, viewport):
 if ((messageType==ABORTED) or (messageType==ERROR)):
 print('Solver problem; stop execution of callback function')
 elif (messageType==JOB_COMPLETED):
 odb = visualization.openOdb(path=jobName + '.odb')
 viewport.setValues(displayedObject=odb)
 viewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

 viewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED)

The following statements show how the example script can be modified to use the callback function. After the first
statement is executed, the callback function responds to all messages from the job named Deform. The final two
statements create the job and submit it for analysis; the example script has now finished executing. When the job is
complete, the callback function opens the resulting output database and displays a contour plot.

...
myJobName = 'Deform'
monitorManager.addMessageCallback(jobName=myJobName,
 messageType=ANY_MESSAGE_TYPE, callback=onMessage,
 userData=myViewport)
myJob = mdb.Job(name=myJobName, model='Beam',
 description=jobDescription)
myJob.submit()
End of example script.

You can use the removeMessageCallback method at the end of the callback function to remove it from the
system. The arguments to the removeMessageCallback method must be identical to the arguments to the
corresponding addMessageCallback command that set up the callback function.

131

An example of a callback function

Using Abaqus Scripting Interface commands in your environment file

The Abaqus environment file is read by Abaqus/CAE when you start a session. The environment file can contain
Abaqus Scripting Interface commands.

The following is an example environment file:

scratch = 'c:/temp'
memory = '256mb'

def onCaeGraphicsStartup():

 # Graphics preferences
 #
 session.defaultGraphicsOptions.setValues(
 displayLists=OFF, dragMode=AS_IS)

def onCaeStartup():

 # Print preferences
 #
 session.printOptions.setValues(vpDecorations=OFF,
 vpBackground=OFF, rendition=COLOR,
 printCommand='lpr')
 session.psOptions.setValues(date=OFF)

 # Job preferences
 #
 def setJobPreferences(module, userData):

 import job
 session.Queue(name='long', hostName='server',
 queueName='large', directory='/tmp')
 addImportCallback('job', setJobPreferences)

 # Visualization preferences
 #
 def setVisPreferences(module, userData):

 import visualization
 session.defaultOdbDisplay.contourOptions.setValues(
 renderStyle=SHADED, visibleEdges=EXTERIOR,
 contourStyle=CONTINUOUS)
 addImportCallback('visualization', setVisPreferences)

The addImportCallback statement instructs Abaqus to call a function when the user first imports a module. In
this example Abaqus calls the setJobPreferences function when the user first enters the Job module, and Abaqus
calls the setVisPreferences function when the user first enters the Visualization module. The
setJobPreferences function creates a queue on a remote host. The setVisPreferences function sets default
options for contour plots.

The example environment file uses the onCaeStartup() function to control a set of Python statements that are
executed when Abaqus/CAE first starts or any time driverUtils.executeOnCaeStartup is executed. The
environment file can also contain the following:

• The onJobStartup() function controls a set of statements that execute when an analysis job starts. For example,

def onJobStartup():
 import os, shutil
 restartDir = savedir + id + '_restart'

Abaqus Scripting User's Guide132

Using Abaqus Scripting Interface commands in your environment file

 if (os.path.exists(restartDir)):
 shutil.rmtree(restartDir)

• The onJobCompletion() function controls a set of statements that execute when an analysis job completes.
For example,

def onJobCompletion():
 import os
 extensions = ('res','stt','mdl','prt','abq','pac')
 restartDir = savedir + os.sep + id + '_restart'
 if (not os.path.exists(restartDir)):
 os.mkdir(restartDir)
 for extension in extensions:
 fileName = id + '.' + extension
 if (os.path.exists(savedir + os.sep + fileName)):
 os.rename(savedir + os.sep + fileName,
 restartDir + os.sep + fileName)

The following variables are available to the onJobStartup() and onJobCompletion() functions:

id

The job identifier that was specified as the value of the job option from the command line.

savedir

The path to the directory from which the job was submitted.

scrdir

The path to the scratch directory.

analysisType

The type of analysis to be executed. Possible values are STANDARD and EXPLICIT.

For a list of the variables that are available outside of the onJobStartup() and onJobCompletion() functions,
see Job variables.

For more information on the environment file, see Environment File Settings and Customizing the Abaqus environment.

133Abaqus Scripting User's Guide

Using Abaqus Scripting Interface commands in your environment file

The Abaqus Python Development
Environment

This section describes the Abaqus Python development environment (PDE).
The Abaqus PDE provides a simple interface that you can use to develop—create, edit, test, and debug—Python
scripts. The Abaqus PDE is primarily intended for use with Abaqus/CAE user interface (GUI) and kernel scripts,
including plug-ins, but you can also use it to work on scripts that function independently from Abaqus/CAE.

In this section:

• About the Abaqus Python development environment

• AbaqusPDE basics

• Using the AbaqusPDE

Abaqus Scripting User's Guide134

The Abaqus Python Development Environment

About the Abaqus Python development environment

The Abaqus PDE is a separate application that you can access from within Abaqus/CAE or launch independently to
work on Python scripts.

It is intended primarily for use with scripts that use the Abaqus/CAE graphical user interface (GUI) or kernel commands,
including plug-ins, but you can also use it to work on scripts that are unrelated to Abaqus. The AbaqusPDE also enables
you to set breakpoints to pause script execution at a particular line in any Python script, including an Abaqus plug-in.

Figure 1 shows a .guiLog file in the AbaqusPDE. The script creates an extruded solid rectangular part named “box1”
and was recorded by logging the actions to complete the task in the Abaqus/CAE user interface.

Main windowMessage area

Show/hide

debugger

Break tools

Status, recording,

and playback tools
File tools

Display main file

or guiLog outputExecution

workspace

Main file open

Add delay

GUI command

line interface

Indent/Unindent

Figure 1:The AbaqusPDE.

The PDE controls allow you to complete the following tasks:

• Open .guiLog, .py, and other Python scripts

• Designate an open file or open another file as the main file for testing

• Open recently used files, including modules called by the main file

• Edit scripts

• Reload modules after editing a plug-in

• Record .guiLog files from Abaqus/CAE

• Run scripts that use the Abaqus/CAE user interface, the Abaqus scripting commands, or general Python commands

• Add (or ignore) breakpoints in a script

135

About the Abaqus Python development environment

• Add a breakpoint in any Python code executed in Abaqus/CAE, such as plug-ins

• Add a delay between executing steps

• Step through scripts (trace the execution), including plug-in modules and custom startup modules

• Change options for recording .guiLog scripts and animating (highlighting) traced files

The following sections contain detailed information about each of the functions in the PDE:

• Abaqus PDE basics

• Using the Abaqus PDE

Abaqus Scripting User's Guide136

About the Abaqus Python development environment

AbaqusPDE basics

The following sections describe the basic functions of the PDE.

In this section:

• Starting the Abaqus Python development environment

• Managing files in the AbaqusPDE

• Editing files in the AbaqusPDE

• Selecting the settings for use with a file

• The message area and GUI command line interface

137

Starting the Abaqus Python development environment

You can choose from several methods to start the Abaqus Python development environment. If you plan to work on
scripts that use the Abaqus/CAE GUI, you should start the Abaqus PDE from within an Abaqus/CAE session or start
it from the command prompt when you start Abaqus/CAE. These startup methods link the Abaqus PDE to the
corresponding Abaqus/CAE session. Alternatively, you can start the Abaqus PDE independently to save system memory
or avoid using an Abaqus license.

Use one of the following methods to start the AbaqusPDE. The first two methods start the AbaqusPDE with a link to
an Abaqus/CAE session. The last method starts the AbaqusPDE independently from Abaqus/CAE:

• In Abaqus/CAE, select File->Abaqus PDE from the main menu bar.

• From a system command prompt, enter

abaqus cae -pde

where abaqus is the command used to start Abaqus.

Note:

Using this method starts Abaqus/CAE without any local user preference settings. Ignoring user preferences
allows you to record and run .guiLog tests using the consistent default startup settings.

• From a system command prompt, enter

abaqus pde [filenames] [-script filename] [-pde Abaqus/CAE command line arguments]

where abaqus is the command used to start Abaqus, and filenames are the names, including the directory paths, of
scripts to be opened at startup.

The -script option allows you to enter the name, including the directory path, of a main file to be opened at
startup. The AbaqusPDE will create a new blank script if the named file does not exist in the specified directory.
If the directory does not exist, the AbaqusPDE generates an error message.

Note:

File names and paths specified without the -script option are opened for editing—not as the main file.

The -pde option is used to specify options for use with Abaqus/CAE if you run a script in the AbaqusPDE that
requires the Abaqus/CAE kernel or user interface. You can also add command line options for Abaqus/CAE using
the Settings menu. For more information, see Selecting the settings for use with a file.

The sections that follow describe how to use the menus and tools within the AbaqusPDE.

Abaqus Scripting User's Guide138

Starting the Abaqus Python development environment

Managing files in the AbaqusPDE

You can use the File menu and tools to manage files in the Abaqus PDE. You can work with multiple scripts, but you
can test only one script at a time. The file to be tested is called the Main File. The path and file name of the main file
are displayed near the upper left corner of the Abaqus PDE window. You can open the main file by using the Select

Main File or Recent Main Files items in the File menu. You can also create a new main file or select an open file to
be the main file.

Note:

When the Set Last Main File on Startup setting is toggled on, the AbaqusPDE automatically reopens the main
file that was open when you closed your last session.

The default file extensions for use with the AbaqusPDE are .py and .guiLog. A .py file typically designates a
standard Python or Abaqus Scripting Interface script, and a .guiLog file is a specialized Python script that records
actions in the Abaqus/CAE GUI.

As you play a main file script, the AbaqusPDE automatically opens any files that contain functions called by the script,
if the files are available in the current path (sys.path). These files are added to the recently used files list in the File

menu. The AbaqusPDE also saves a list of recently used files and other files (dependent files) called when you run a
main file. This list is saved in the current directory as abaqus_pde.deps.

Figure 1 shows the items in the AbaqusPDEFile menu.

Figure 1:The File menu.

The following options are available from the File menu:

New

Create a new file. The AbaqusPDE creates a new main file and displays it in the main window. The file is created

using the default naming convention _abaqus#_.guiLog, where # starts at 1 and is incremented as you

create more files in the current directory. You can also click the New guiLog icon to create a new file.

Abaqus automatically designates the new script as the main file.

Open

Open a script. You can also click the Open file icon to open a script.

139

Managing files in the AbaqusPDE

If you have not yet opened or created another script, Abaqus automatically makes the first opened file the main
file for testing. Otherwise, the file opened becomes the current file viewed in the main window, but it is not the
main file used for testing.

Tip: You can drag and drop script files from the desktop or from Windows Explorer into the Abaqus
PDE for editing.

You can navigate to the file you want to open by entering its full path, or you can specify a path using environment
variables.

Select Main File

Open a script as the main file for testing. You can also click the Open main file icon to open a script as the
main file.

Make Current Main

Designate the current script in the main window as the main file for testing.

Save

Save changes to the current file. You can also click Save to save the current file.

Save As

Save the current file with a new name.

Reload Modules

Reload user interface modules to capture any changes that you made since they were first loaded. You can also

click Reload Modules to reload the user interface modules. The AbaqusPDE reloads user interface modules
in the Abaqus/CAEGUI and Abaqus/CAE kernel processes unless the current setting for the Run Script In

option is “local,” in which case any changed modules are reloaded in the local PDE process.

Close File

Close the current file.

Filename.py

The name and file extension of the current main file, if one is selected.

Clicking here shows a list of dependent files that were found when the main file was run. If the current main file
has not been run in the AbaqusPDE, this list will be empty.

Recent Main Files

A list of the files that you have opened as the main file for testing. Recent Files from previous sessions will be
read from the abaqus_pde.deps file, if it exists in the current directory.

Abaqus Scripting User's Guide140

Managing files in the AbaqusPDE

Recent Traced Files

A list of files that were opened by the AbaqusPDE to trace a function called by one of the main files that you
tested. Recent Files from previous sessions will be read from the abaqus_pde.deps file, if it exists in the
current directory.

Recent Files

A list of all files that you have opened, regardless of whether you opened them to view and edit them or opened
them as the main file for testing. Recent Files from previous sessions will be read from the abaqus_pde.deps
file, if it exists in the current directory.

The recently used files lists are stored in the abaqus_pde.deps file in the directory from which you start the current
AbaqusPDE session. If you start an AbaqusPDE session from another location, the lists contain only the files that you
used the last time you opened a session in that directory. If you have not previously used the AbaqusPDE in the current
directory, a new set of recently used files is recorded as you work.

141Abaqus Scripting User's Guide

Managing files in the AbaqusPDE

Editing files in the AbaqusPDE

You can use the Edit menu to edit scripts in the Abaqus PDE. The Edit menu contains common editing tools, including
Undo, Redo, Copy, Cut, Paste, Find, and Replace. It also contains the following tools for editing scripts:

• Indent Region >

• Unindent Region <

• Comment Region ##

• Uncomment Region

To use these tools, highlight one or more lines of code in the main window and select the desired option from the Edit

menu. The Edit menu also contains a keyboard shortcut for each of the editing tools.

Abaqus Scripting User's Guide142

Editing files in the AbaqusPDE

Selecting the settings for use with a file

Use the Settings menu and tools to change some of the options in the Abaqus PDE.

Figure 1 shows the items and default selections in the AbaqusPDESettings menu.

Figure 1:The Settings menu.

The following items are available from the Settings menu:

Recording Options

Set the display of the triad, state block, and title block and whether the legend background matches the viewport.
These options affect the commands recorded for an output database.

Allow Editing of Files

Toggle between edit and read-only modes for all files. Editing is allowed by default.

Show File Line Numbers

Display line numbers for any open files on the left side of the main window. Line numbers are displayed by
default.

Ignore Breakpoints During Play

Run the main file continuously, skipping any breakpoints, until it completes or stops for an error. Breaks are not
skipped by default. You can also skip breakpoints by toggling on Ignore breaks, located in the toolbar above
the main window.

Allow Pause in Play

Pause a running file by clicking the Pause button. Pause is allowed by default. Allowing pause also causes the
main file to run in the debugger. (For more information, see Using the debugger.)

Set Last Main File on Startup

Upon startup, automatically reopen the main file that was open when you last closed the AbaqusPDE.

143

Selecting the settings for use with a file

Run Script In

Select whether the main file is run in the Abaqus/CAE GUI, the Abaqus/CAE kernel, or run locally. By default,
.guiLog files are run in the GUI, and .py and other file types are run in the kernel. You can also set this option
using the GUI, Kernel, and Local radio buttons located above the main window.

If the AbaqusPDE was opened without Abaqus/CAE and you run a script with the GUI or Kernel process, the
AbaqusPDE will start Abaqus/CAE to run the script.

.py Default to Kernel

Set .py files to run in the Abaqus/CAE kernel. This option is selected by default. If .py Default to Kernel is
not selected, .py files are run locally. Select the GUI or Local radio button to run a Python script in one of
these modes without changing the default behavior.

Line Animation

Highlight the line currently being executed in the main window. The following animation settings are available:

• No animation.

• Animate main file (default). Highlights only the statements in the main function or method. Functions called
from the main script are not highlighted.

• Animate main file functions. Highlights the main script statements and the statements in functions that are
defined within the main file.

• Animate all files. Highlights the main script statements and statements within all functions for which the
source code is available.

Python Code

Control the appearance and editing behavior of Python scripts in the AbaqusPDE main window.

Syntax Coloring

Display the code using various font colors according to its purpose. This option is selected by default.

You can view or change the color selections with the Choose Syntax Colors option.

Python Editing

Edit scripts with Python formatting, such as indentation, included automatically. This option is selected
by default.

Choose Syntax Colors

Opens the PDE Syntax Colors dialog box in which you can view or change the color selections for editing
scripts. Click Reset Defaults to restore the default colors.

CAE Command Line Extra Args...

Enter extra arguments for use when Abaqus/CAE is launched from the AbaqusPDE.

Abaqus Scripting User's Guide144

Selecting the settings for use with a file

Auto Trace in CAE

Automatically trace code in GUI and kernel processes of Abaqus/CAE. The script will be traced until it returns
from the frame in which the trace started. The trace will therefore stop when the function returns or the end of
the script is reached. This option is selected by default.

145Abaqus Scripting User's Guide

Selecting the settings for use with a file

The message area and GUI command line interface

The message area and the GUI command line interface share the space at the bottom of the Abaqus PDE, similar to
the kernel command line interface in Abaqus/CAE. (For more information, see Components of the main window.) The
message area is displayed by default. It displays messages and warnings as you run scripts in the Abaqus PDE.

The GUI command line interface is hidden by default, but it uses the same space occupied by the message area. Click

 in the bottom left corner of the AbaqusPDE main window to switch from the message area to the GUI command
line interface. The GUI and kernel processes in Abaqus/CAE run separately, each using its own Python interpreter.
You can use the GUI command line interface to type Python commands and to evaluate mathematical expressions
using the Python interpreter that is built into the Abaqus/CAE GUI. You can use the kernel command line interface in
Abaqus/CAE for similar tasks. Each command line interface includes primary (>>>) and secondary (...) prompts to
indicate when you must indent commands to comply with Python syntax. After you use the GUI command line interface,

click to display the message area.

If new messages are generated in the message area while the GUI command line interface is active, the background
around the message area icon turns red. The background reverts to its normal color when you display the message area.

Abaqus Scripting User's Guide146

The message area and GUI command line interface

Using the AbaqusPDE

The following sections contain detailed information that you can use to create and work with files in the
AbaqusPDE.

In this section:

• Creating .guiLog files

• Running a script

• Using the debugger

• Using breakpoints

• Using the AbaqusPDE with plug-ins

• Using the AbaqusPDE with custom applications

147

Creating .guiLog files

The AbaqusPDE is designed to work any type of Python files, including .guiLog files. A .guiLog is a Python
script that records actions in the Abaqus/CAE GUI. When you create a .guiLog, it records every mouse click, dialog
box entry, and menu, tool, or viewport selection.

To record actions from Abaqus/CAE, the AbaqusPDE session must be associated with a Abaqus/CAE session. The
AbaqusPDE and Abaqus/CAE sessions are associated if you started them together from a command prompt or if you
started the AbaqusPDE by selecting File->Abaqus PDE in Abaqus/CAE. For more information on starting the
AbaqusPDE, see Starting the Abaqus Python development environment.

1. From the main menu bar in the Abaqus PDE, select File->New to create a new empty file in the main
window.

Tip: You can also click the New guiLog icon to create a new .guiLog file.

2. Click the Start Recording icon to begin recording actions from Abaqus/CAE.

Abaqus writes the following two lines to begin the file:

from abaqusTester import *
import abaqusGui

3. Complete all the desired actions in the Abaqus/CAE session to record them in the .guiLog file.

Note:

When you record .guiLog files, do not use mouse button 2 to close the dialog box for a
procedure. Instead, use the buttons in the dialog box to close it. Using mouse button 2 adds
multiple dialog box closing commands to the recorded .guiLog file. Since only one command
is needed to close the dialog, the extra commands will result in an error when the recorded script
is played.

4. Click the Stop Recording icon to stop recording.

5. Use standard text editing techniques to edit the file in the main window. Additional editing tools are
available in the Edit menu (for more information, see Editing files in the Abaqus PDE.)

6. To add more recorded commands to the file, position the cursor at the desired location or click End

of Main File to position the cursor at the end of the file, then repeat Step 2 through Step 4.

7. Select File->Save to save the file or File->Save As to save the file with a new name; new files
automatically use Save As.

Abaqus Scripting User's Guide148

Creating .guiLog files

Running a script

The Abaqus PDE runs scripts using one of three processes—GUI, kernel, or local. By default, .guiLog files are run
in the Abaqus/CAE GUI process. If the Abaqus PDE was opened from within Abaqus/CAE, .py files and all other
file types are run in the Abaqus/CAE kernel process by default. If the Abaqus PDE was opened without Abaqus/CAE,
.py files are run in the local process by default. The local process runs the script without Abaqus/CAE, using Python
in the local (PDE) process. You can change the process by selecting Settings->Run Script In and choosing the desired
process, or by clicking the GUI, Kernel, or Local radio buttons located above the main window. If the Abaqus PDE
was opened without Abaqus/CAE and you run a script with the GUI or Kernel process, Abaqus PDE will start
Abaqus/CAE to run the script.

To run the main file, click Play above the main window. The AbaqusPDE runs the main file until it completes,
encounters an error, or reaches a breakpoint. As the script runs, the current line is highlighted according to the Line

Animation settings.

Use the other buttons—Next Line , Stop , Go to Start , and Go to End —to execute the main file one
line at a time, stop running the file, or reposition the cursor at the beginning or end of the file, respectively.

As you run a script, you might want to specify a breakpoint to pause script execution at a particular line. For more
information about breakpoints, see Using breakpoints

149

Running a script

Using the debugger

You can use the debugger in the Abaqus PDE to troubleshoot your scripts.

To open the debugger, select Window->Debugger or click Start debugger . If you have a script paused in the
main window, the debugger opens at the current position of the test. If you do not have a paused script, the debugger
automatically begins running the main file and positions the cursor at the start of the script.

The debugger consists of a call stack area, action buttons, and the debugger command line interface (CLI) window, as
shown in Figure 1. The debugger is positioned between the AbaqusPDE main window and the message area.

Message area

Call Stack area Debug buttons

GUI Command

Line Interface
Watch variable window

Debugger Command

Line Interface (CLI)

Figure 1:The AbaqusPDE debugger.

The debugger uses a custom Python module named atxPdb, based on the Python pdb module. You can enter Pdb
commands in the debugger CLI; you can also enter any Python statements in the debugger CLI. Python statements are
executed in the same process—GUI, kernel, or local—that is running the current script (for more information, see
Running a script).

Note:

If you enter a command in the debugger CLI and it does not seem to work, it may be conflicting with a Pdb
command.

The call stack area shows the commands that are currently being executed.

The debugger contains a tool to watch variables as scripts are executed. To add a variable to the watch list, click mouse
button 3 over the variable name in the AbaqusPDE main window and select Add Watch: variable name from the
menu that appears. The AbaqusPDE adds the variable to the watch list, indicating the namespace that the variable is
defined within, the variable name, the type of data the variable can store, the current value, and the file and line where
the variable is located. When you execute or step through the script, the variable information is updated as needed.

Abaqus Scripting User's Guide150

Using the debugger

You can also activate the watch list tool after starting the debugger by selecting Show Watch from the action buttons
below the call stack area or by selecting Window->Debug Windows->Watch List. Abaqus displays the Watch List

area below the debugger or below the main window if the debugger is not open.

You can also customize the following aspects of variable display in the Watch List:

• You can switch a variable's display format between repr and str formats. The repr() function returns a string
that is better suited to being read by the Python interpreter, while the str() function returns a string better suited
to printing. For more information about the built-in Python functions repr() and str(), refer to the official
Python website (http://www.python.org).

To toggle between these settings, click mouse button 3 on a watch variable row and select Display repr (not str)

value of variable name or Display str (not repr) value of variable name from the list that appears. If the variable
is a local variable and the program is not accessing that section of code, the variable value will be set to “not
evaluated.” Variable values are also set to “not evaluated” if the program is not running.

• You can prompt the AbaqusPDE to pause when the program reaches a line in which the value of a selected watch
variable has changed. To toggle on the “stop on change” option for a particular watch variable, click mouse button
3 on the variable's line and select Stop on change to variable name from the list that appears. When this option is
selected, AbaqusPDE stops at the line after the change.

• You can remove any watch variables from the debugger by clicking mouse button 3 on the variable's line and
selecting Delete watch var variable name from the list that appears.

151Abaqus Scripting User's Guide

Using the debugger

Using breakpoints

Breakpoints are points where script execution pauses until you select Play or Next Line above the main window.

You can add breakpoints at any line in a script. Breakpoints also allow you to pause plug-ins and custom applications
so you can trace their execution.

To add a breakpoint, position the cursor on the desired line of the script, click mouse button 3, and select Add

Breakpoint. Use the same process, selecting Remove Breakpoint, to remove breakpoints. You can also add and

remove breakpoints using the breakpoint tool located above the main window or the [F9] key.

Breakpoints are indicated by an asterisk to the right of the line number in the Abaqus PDE. If syntax colors are active,
the line number, asterisk, and the line of code are colored using the current breakpoint color selection (for more
information, see Selecting the settings for use with a file).

You can review breakpoints in all open files by selecting Window->Debug Windows->Breakpoints List. The
AbaqusPDE Breakpoints dialog box lists the file path, name, and each line number where a breakpoint is located.
You can double-click the paths to position the cursor in the main window at the selected breakpoint.

Abaqus Scripting User's Guide152

Using breakpoints

Using the AbaqusPDE with plug-ins

The functions and tools in the AbaqusPDE work the same way for plug-ins as they do for other scripts. However, since
plug-ins are launched within Abaqus/CAE, you cannot load and run them as a main file like you can with other scripts.
Instead, you add breakpoints, then run the plug-ins as usual.

If the plug-in contains both kernel and GUI functions, you must trace them separately. Tracing the kernel and GUI
functions separately prevents problems that can occur in Abaqus/CAE as the AbaqusPDE attempts to switch between
kernel and GUI modes while the code is running. Separating the functions also provides a logical approach to locating
problems in the kernel code versus ones in the user interface.

After you save the changes to your plug-in, you can trace its execution.

1. Open the file that you want to debug.

2. Position the cursor where you want to add a breakpoint. Click mouse button 3, and select Add

Breakpoint. (For more information, see Using breakpoints.)

3. Start the plug-in from within Abaqus/CAE.

The plug-in code appears in the Abaqus PDE window, stopped at the breakpoint or at the line
immediately following the start trace statement, if you added one.

4. Use the Abaqus PDE controls and options described in the previous sections to step through the
execution of the plug-in.

153

Using the AbaqusPDE with plug-ins

Using the AbaqusPDE with custom applications

Custom applications are scripts created to modify or add functionality to Abaqus/CAE. They typically use a combination
of the Abaqus Scripting Interface commands and the Abaqus GUI toolkit commands to extend the user interface and
the underlying kernel commands. Custom applications are launched concurrent with the start of an Abaqus/CAE
session, and they are integrated into the existing functionality.

If the application contains both kernel and GUI functions, you must trace them separately. Tracing the kernel and GUI
functions separately prevents problems that can occur in Abaqus/CAE as the AbaqusPDE attempts to switch between
kernel and GUI modes while the code is running. Separating the functions also provides a logical approach to locating
problems in the kernel code versus ones in the GUI code.

1. Enter the following at a command prompt to start the Abaqus PDE and the custom application:

abaqus pde -pde [args]

where abaqus is the command you use to start Abaqus and args are the arguments required to start the
custom application. For example, if you enter abaqus cae -custom xxx.py to start Abaqus/CAE
and your application, enter abaqus pde -pde -custom xxx.py.

Note:

You cannot start the custom application and launch the AbaqusPDE from within Abaqus/CAE
since the initial startup processes would already be complete.

2. Open the file that you want to debug.

3. Position the cursor where you want to add a breakpoint. Click mouse button 3, and select Add

Breakpoint. (For more information, see Using breakpoints.)

4. Click Start CAE at the top right of the Abaqus PDE to start Abaqus/CAE with the custom startup
commands.

5. The application code appears in the Abaqus PDE window, stopped at a breakpoint.

6. Use the Abaqus PDE controls and options described in the previous sections to step through the
execution of the custom application.

Abaqus Scripting User's Guide154

Using the AbaqusPDE with custom applications

Putting it all Together: Abaqus Scripting
Interface Examples

The section provides examples that illustrate how you can combine Abaqus Scripting Interface commands and
Python statements to create your own scripts. You can use the scripts to create Abaqus/CAE models, submit
jobs for analysis, and view the results.
For examples of scripts that read and write from an output database, see Example scripts that access data from

an output database.

The Abaqus/CAE example scripts in this section illustrate:

• How you can use commands from the Abaqus Scripting Interface to create a simple model, submit it for
analysis, and view the results. Reproducing the cantilever beam tutorial uses Abaqus Scripting Interface
commands to reproduce the cantilever beam tutorial described in Understanding Abaqus/CAE modules.

• How you can use the Abaqus Scripting Interface to control the output from the Visualization module in
Abaqus/CAE (Abaqus/Viewer).

- Opening the tutorial output database explains how to use abaqus fetch to retrieve the Abaqus/CAE
tutorial output database.

- Opening an output database and displaying a contour plot explains how to open the tutorial output
database, display a contour plot, and print the resulting viewport to a file.

- Printing a contour plot at the end of each step explains how to open the tutorial output database, customize
the legend, display a contour plot at the end of each step, and print the resulting viewports to a file.

• How you can introduce more complex programming techniques into your Abaqus Scripting Interface scripts.
Investigating the skew sensitivity of shell elements reproduces the problem found in Skew sensitivity of shell

elements. You use Abaqus/CAE to create the model, and you use Abaqus Scripting Interface commands to
parameterize an evaluation of the model by changing its geometry and element type. The example investigates
the sensitivity of the shell elements in Abaqus to skew distortion when they are used as thin plates.

• How you can use functions available in the caePrefsAccess module to edit the display preferences and
GUI settings in the abaqus_2025.gpr file. Editing display preferences and GUI settings describes how
to query for and set several default display and GUI behaviors in Abaqus/CAE.

The example scripts from this guide can be copied to the user's working directory by using the Abaqusfetch

utility:

abaqus fetch job=scriptName

where scriptName.py is the name of the script (see Fetching Sample Input Files).

In this section:

• Reproducing the cantilever beam tutorial

• Generating a customized plot

• Investigating the skew sensitivity of shell elements

• Editing display preferences and GUI settings

155

Putting it all Together: Abaqus Scripting Interface Examples

Reproducing the cantilever beam tutorial

This section explains how to use the Abaqus Scripting Interface commands to reproduce a tutorial that shows
the basic steps to create and analyze a simple model.
The tutorial, Creating and Analyzing a Simple Model in Abaqus/CAE, is available in Getting Started with

Abaqus/CAE.

In this section:

• About the cantilever beam example

• Running the example

• The cantilever beam example script

Abaqus Scripting User's Guide156

About the cantilever beam example

The cantilever beam example is a basic tutorial for the experienced Abaqus user.

The example leads you through the Abaqus/CAE modeling process by visiting each of the modules and shows you the
basic steps to create and analyze a simple model. In Creating and Analyzing a Simple Model in Abaqus/CAE, you
create a model of a steel cantilever beam and load its top surface. You then analyze the beam and plot the resulting
stresses and displacements. Figure 1 illustrates the model that you create and analyze.

20 mm

25 mm
200 mm

0.5 MPa

Figure 1: A loaded cantilever beam.

157

About the cantilever beam example

Running the example

Use the following command to retrieve the output database that is read by the scripts:

abaqus fetch job=beamExample

To run the script, do the following:

1. Start Abaqus/CAE from a directory in which you have write permission by typing abaqus cae.

2. From the startup screen, select Run Script.

3. From the Run Script dialog box that appears, enter the path given above and select the file containing
the script.

4. Click OK to run the script.

Note:

If Abaqus/CAE is already running, you can run the script by selecting File->Run Script from the main menu
bar.

Abaqus Scripting User's Guide158

Running the example

The cantilever beam example script

The first line of the script, from abaqus import *, imports the Mdb and Session objects. The current viewport
is session.viewports['Viewport: 1'], and the current model is mdb.models['Model-1']. Both of
these objects are available to the script after you import the abaqus module. The second line of the script, from
abaqusConstants import *, imports the Symbolic Constants defined in the Abaqus Scripting Interface. The
script then creates a new model that will contain the cantilever beam example and creates a new viewport in which to
display the model and the results of the analysis. For a description of the commands used in this section, see the
appropriate sections in the Abaqus Scripting Reference Guide.

The script then imports the Part module. Most of the sections in this example begin with importing the appropriate
module, which illustrates how a script can import a module at any time to extend or augment the object model. However,
the Abaqus Scripting Interface has a convention that all the required modules are imported at the start of a script; and
that convention is followed in other example scripts in this guide.

"""
beamExample.py

Reproduce the cantilever beam example from the
Appendix of the Getting Started with
Abaqus: Interactive Edition Manual.
"""

from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True,
 reportDeprecated=False)

Create a model.

myModel = mdb.Model(name='Beam')

Create a new viewport in which to display the model
and the results of the analysis.

myViewport = session.Viewport(name='Cantilever Beam Example',
 origin=(20, 20), width=150, height=120)

#---

import part

Create a sketch for the base feature.

mySketch = myModel.ConstrainedSketch(name='beamProfile',
 sheetSize=250.)

Create the rectangle.

mySketch.rectangle(point1=(-100,10), point2=(100,-10))

Create a three-dimensional, deformable part.

myBeam = myModel.Part(name='Beam', dimensionality=THREE_D,
 type=DEFORMABLE_BODY)

Create the part's base feature by extruding the sketch
through a distance of 25.0.

myBeam.BaseSolidExtrude(sketch=mySketch, depth=25.0)

159

The cantilever beam example script

#---

import material

Create a material.

mySteel = myModel.Material(name='Steel')

Create the elastic properties: youngsModulus is 209.E3
and poissonsRatio is 0.3

elasticProperties = (209.E3, 0.3)
mySteel.Elastic(table=(elasticProperties,))

#---

import section

Create the solid section.

mySection = myModel.HomogeneousSolidSection(name='beamSection',
 material='Steel', thickness=1.0)

Assign the section to the region. The region refers
to the single cell in this model.

region = (myBeam.cells,)
myBeam.SectionAssignment(region=region,
 sectionName='beamSection')

#---

import assembly

Create a part instance.

myAssembly = myModel.rootAssembly
myInstance = myAssembly.Instance(name='beamInstance',
 part=myBeam, dependent=OFF)

#---

import step

Create a step. The time period of the static step is 1.0,
and the initial incrementation is 0.1; the step is created
after the initial step.

myModel.StaticStep(name='beamLoad', previous='Initial',
 timePeriod=1.0, initialInc=0.1,
 description='Load the top of the beam.')

#---

import load

Find the end face using coordinates.

endFaceCenter = (-100,0,12.5)
endFace = myInstance.faces.findAt((endFaceCenter,))

Abaqus Scripting User's Guide160

The cantilever beam example script

Create a boundary condition that encastres one end
of the beam.

endRegion = (endFace,)
myModel.EncastreBC(name='Fixed',createStepName='beamLoad',
 region=endRegion)

Find the top face using coordinates.

topFaceCenter = (0,10,12.5)
topFace = myInstance.faces.findAt((topFaceCenter,))

Create a pressure load on the top face of the beam.

topSurface = ((topFace, SIDE1),)
myModel.Pressure(name='Pressure', createStepName='beamLoad',
 region=topSurface, magnitude=0.5)

#---

import mesh

Assign an element type to the part instance.

region = (myInstance.cells,)
elemType = mesh.ElemType(elemCode=C3D8I, elemLibrary=STANDARD)
myAssembly.setElementType(regions=region, elemTypes=(elemType,))

Seed the part instance.

myAssembly.seedPartInstance(regions=(myInstance,), size=10.0)

Mesh the part instance.

myAssembly.generateMesh(regions=(myInstance,))

Display the meshed beam.

myViewport.assemblyDisplay.setValues(mesh=ON)
myViewport.assemblyDisplay.meshOptions.setValues(meshTechnique=ON)
myViewport.setValues(displayedObject=myAssembly)

#---

import job

Create an analysis job for the model and submit it.

jobName = 'beam_tutorial'
myJob = mdb.Job(name=jobName, model='Beam',
 description='Cantilever beam tutorial')

Wait for the job to complete.

myJob.submit()
myJob.waitForCompletion()

#---

import visualization

161Abaqus Scripting User's Guide

The cantilever beam example script

Open the output database and display a
default contour plot.

myOdb = visualization.openOdb(path=jobName + '.odb')
myViewport.setValues(displayedObject=myOdb)
myViewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

myViewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED)

Abaqus Scripting User's Guide162

The cantilever beam example script

Generating a customized plot

The following section provides examples of Abaqus Scripting Interface scripts that open an output database and
generate a customized plot.
In effect, these scripts reproduce the functionality of the Visualization module in Abaqus/CAE.

In this section:

• Opening the tutorial output database

• Opening an output database and displaying a contour plot

• Printing a contour plot at the end of each step

163

Opening the tutorial output database

Each of the following example scripts opens the output database used by the Visualization module tutorial in Getting

Started with Abaqus/CAE. Use the following command to retrieve the output database that is read by the scripts:

abaqus fetch job=viewer_tutorial

Abaqus Scripting User's Guide164

Opening the tutorial output database

Opening an output database and displaying a contour plot

The following example of a script containing Abaqus Scripting Interface commands uses the output database used by
Viewing the Output from Your Analysis.

Use the following command to retrieve the example script:

abaqus fetch job=viewerOpenOdbAndContour

The script does the following:

• Creates a viewport, and makes it the current viewport.

• Opens an output database.

• Displays a contour plot.

• Displays the model in the first frame of the third step.

• Sets the number of contour intervals and the contour limits.

• Prints a color image of the viewport to a .png file.

"""
viewerOpenOdbAndContour.py

Print a contour plot to a local PNG-format file.
"""

from abaqus import *
from abaqusConstants import *
import visualization

Create a new Viewport for this example.

myViewport=session.Viewport(name='Print a contour plot',
 origin=(10, 10), width=200, height=100)

Open the output database and associate it
with the new viewport.

odbPath = "viewer_tutorial.odb"
myOdb = visualization.openOdb(path=odbPath)

myViewport.setValues(displayedObject=myOdb)

Display a contour plot of the output database.

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Change to the first frame of the third step.
Remember that indices in Python begin with zero:
The index of the first frame is 0.
The index of the third step is 2.

myViewport.odbDisplay.setFrame(step=2, frame=0)

Change the number of contour intervals to 10
starting at 0.0 and ending at 0.10.

myViewport.odbDisplay.contourOptions.setValues(numIntervals=10,
 maxAutoCompute=OFF, maxValue=0.10,

165

Opening an output database and displaying a contour plot

 minAutoCompute=OFF, minValue=0.0,)

Generate color output.
Do not print the viewport decorations or the black background.

session.printOptions.setValues(rendition=COLOR,
 vpDecorations=OFF, vpBackground=OFF)

Print the viewport to a local PNG-format file.

session.printToFile(fileName='contourPlot', format=PNG,
 canvasObjects=(myViewport,))

Abaqus Scripting User's Guide166

Opening an output database and displaying a contour plot

Printing a contour plot at the end of each step

The following example script demonstrates how to produce and print a contour plot at the last frame of every step
within an output database file. The example sets the appropriate contour limits so that all plots can be viewed within
a fixed range.

Use the following command to retrieve the example script:

abaqus fetch job=viewerPrintContours

The script does the following:

• Defines the contour limits function.

• Determines the final frame of every step within an output database file.

• Produces a contour plot at the final frame of every step.

• Prints the contour plot to a file.

"""
viewerPrintContours.py

Print a set of contour plots to .png files.
"""

from __future__ import print_function
from abaqus import *
from abaqusConstants import *
import visualization

Create a viewport for this example.

myViewport=session.Viewport(name=
 'Print contour plot after each step', origin=(10, 10),
 width=150, height=100)

Open the output database and associate it with the viewport.
Then set the plot state to CONTOURS_ON_DEF

try:
 myOdb = visualization.openOdb(path='viewer_tutorial.odb')

except (AbaqusException) as value:
 print('Error:', value)

myViewport.setValues(displayedObject=myOdb)

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Determine the number of steps in the output database.

mySteps = myOdb.steps
numSteps = len(mySteps)

Set the maximum and minimum limits of the contour legend.

myViewport.odbDisplay.contourOptions.setValues(numIntervals=10,
 maxAutoCompute=OFF, maxValue=0.1,
 minAutoCompute=OFF, minValue=0.0)

167

Printing a contour plot at the end of each step

Establish print preferences.

session.printOptions.setValues(vpBackground=OFF)
session.psOptions.setValues(orientation=LANDSCAPE)
myViewport.viewportAnnotationOptions.setValues(
 triad=OFF,title=OFF,state=OFF)
myViewport.odbDisplay.basicOptions.setValues(
 coordSystemDisplay=OFF,)

For each step, obtain the following:
1) The step key.
2) The number of frames in the step.
3) The increment number of the last frame in the step.
#

for i in range(numSteps):
 stepKey = list(mySteps.keys())[i]
 step = mySteps[stepKey]
 numFrames = len(step.frames)

Go to the last frame.
Display a contour plot.
Display the step description and the increment number.

 myViewport.odbDisplay.setFrame(step=i, frame=numFrames-1)
 myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Remove white space from the step key and use the result
to name the file.

 fileName=stepKey.replace(' ','')

Print the viewport to a file.

 session.printToFile(fileName, PNG, (myViewport,))

Abaqus Scripting User's Guide168

Printing a contour plot at the end of each step

Investigating the skew sensitivity of shell elements

In this example you will use Abaqus/CAE to create the model and store the model in a model database.
The script opens the model database and performs a parametric study on the model. The example illustrates how
you can use a combination of Abaqus/CAE and the Abaqus Scripting Interface to analyze a problem.

In this section:

• Creating the model to analyze

• Changing the skew angle

• Using a script to perform a parametric study

169

Creating the model to analyze

This example uses Abaqus Scripting Interface commands to evaluate the sensitivity of the shell elements in Abaqus
to skew distortion when they are used as thin plates.
Further details can be found in Skew sensitivity of shell elements.

The problem investigates the effects on the accuracy of the bending moment computed at the center of a shell using:

• different shell formulations and

• at different angles.

Figure 1 illustrates the basic geometry of the simply supported skew plate with a uniform distributed load.

1.0 m

x, y, z displacements

constrained on boundary

δ
x

y

1.
0

m

Figure 1: A 4 × 4 quadrilateral mesh of the plate.

The plate is loaded by a uniform pressure of 1.0 × 10−6 MPa applied over the entire surface. The edges of the plate are

all simply supported. The analysis is performed for five different values of the skew angle, : 90°, 80°, 60°, 40°, and
30°. The analysis is performed for two different quadrilateral elements: S4 and S8R.

The example is divided into two scripts. The controlling script, skewExample.py, imports
skewExampleUtils.py. Use the fetch utility to retrieve the scripts:

abaqus fetch job=skewExample
abaqus fetch job=skewExampleUtils

You should use Abaqus/CAE to create your model and to save the resulting model database. You will then use scripting
to parameterize your model, submit an analysis job, and operate on the results generated.

Start Abaqus/CAE, and create a model database from the Start Session dialog box. By default, you are operating on
a model named Model-1. The model should include the following:

Part

Create a three-dimensional planar shell part, and name it Plate. Use an approximate size of 5.0. Sketch a square
where all sides are 1.0 m long, with the lower-left vertex at (0, 0, 0). Delete all perpendicular and vertical
constraints, and apply the following:

• fixed constraints to the lower-left and lower-right vertices,

• horizontal constraints to the top and bottom edges (if they are not already defined),

• parallel constraints to the left and right edges, and

• an angle dimension to the lower-left vertex (90°).

Abaqus Scripting User's Guide170

Creating the model to analyze

Material

Create a material, and name it Steel. The Young's modulus is 30 MPa, and the Poisson's ratio is 0.3.

Section

Create a homogeneous shell section that refers to the material called Steel. Name the section Shell. The
plate thickness is 0.01 m. The length/thickness ratio is, thus, 100/1 so that the plate is thin in the sense that
transverse shear deformation should not be significant. Assign the section to the plate.

Assembly

Create the assembly using a single, independent part instance of Plate. Abaqus/CAE names the part instance
Plate-1. Creating an independent part instance means that the mesh is based at the assembly level.

Step

Create a static step and name it Step-1. Enter Apply pressure for the step Description. Accept the default
time period of 1.0 and the default initial increment of 1.0.

Output database requests

Edit the default output database request for field output and select only U, Translations and rotations. Create
a second field output request for SF, Section forces and moments, and specify Nodes as the element output
position. Both field output requests should be for the whole model after every increment. Delete all requests for
history output.

Boundary condition

Create a displacement boundary condition, and name it Pinned. The boundary condition pins the exterior edges
of the plate.

Load

Create a pressure load, and name it Pressure. Apply the load to the face of the plate. Accept the default side
of the plate and use a magnitude of 1.0. This positive pressure will result in a negative displacement in the
3-direction.

Set

Partition the plate into quarters by sketching lines between the midpoints of the four edges. Create a set that
contains the vertex at the center of the plate, and name the set CENTER.

Mesh

Create a 4 × 4 mesh of quadrilateral elements on the plate.

Job

Create a job, and name it skew. The job must refer to the model Model-1.

171Abaqus Scripting User's Guide

Creating the model to analyze

If you want, you can complete the above steps for creating the model using a function in skewExampleUtils.py.
In the command line interface area of Abaqus/CAE, type the following commands:

import skewExampleUtils
skewExampleUtils.createModel()

When you execute the function, a new database is created, so you should save your work first.

Finally, save the database as skew.cae.

Abaqus Scripting User's Guide172

Creating the model to analyze

Changing the skew angle

The parameterized script changes the skew angle of the plate and computes the maximum bending moment at the
center for two different element types. The script changes the skew angle by modifying an angular dimension and
selecting the vertices to move. You need to add the angular dimension and determine the indices of the dimension to
modify and the vertices to move.

The parameterized script changes the skew angle of the plate and computes the maximum bending moment at the
center for two different element types. The script changes the skew angle by modifying an angular dimension and
selecting the vertices to move. You need to add the angular dimension and determine the indices of the dimension to
modify and the vertices to move.

Add the angular dimension

1. Return to the Part module.

2. From the main menu bar, select Feature->Edit and select the plate to edit.

3. From the Edit Feature dialog box, select Edit Section Sketch.

4. From the Sketcher toolbox, select the dimension tool and dimension the angle at the lower left
corner of the plate as shown in Figure 1.

Figure 1: Dimension the angle at the lower left corner of the plate.

Determine the indices of the dimension to modify and the vertices to move

1. From the Sketcher toolbox, select the edit dimension tool .

2. Select the lower left angular dimension.

3. Enter a dimension of 60, and click OK.

4. Exit the Sketcher tools, and exit the Sketcher.

5. From the Edit Feature dialog box, select OK.

6. Examine the replay file, abaqus.rpy. The last few lines of the replay file will contain the statements
that modified the angular dimension. The statement will look similar to the following:

d[0].setValues(value=60.0,)

173

Changing the skew angle

7. The example script, skewExample.py, contains a similar statement that modifies the angular
dimension of the plate. The index of the angular dimension in your model must be the same as the
index in the example script. If the indices are not the same, you must edit the example script and enter
the correct indices.

d[0].setValues(value=angle,)

Save the model database, and name it skew. Abaqus/CAE saves the model database in a file called skew.cae. The
example script opens this model database and parameterizes the model it contains.

Abaqus Scripting User's Guide174

Changing the skew angle

Using a script to perform a parametric study

The following shows the contents of the script skewExample.py. The parametric study does the following:

• Opens the model database and creates variables that refer to the part, the assembly, and the part instance stored in
Model-1.

• Creates variables that refer to the four faces and the nine vertices in the instance of the planar shell part.

• Skews the plate by modifying the angular dimension in the sketch of the base feature.

• Defines the logical corners of the four faces, and generates a structured mesh.

• Runs the analysis for a range of angles using two element types for each angle.

• Calculates the maximum moment and displacement at the center of the shell.

• Displays X–Y plots in separate viewports of the following:

- Displacement versus skew angle

- Maximum bending moment versus skew angle

- Minimum bending moment versus skew angle

The theoretical results are also plotted.

"""
skewExample.py

This script performs a parameter study of element type versus
skew angle. For more details, see Problem 2.3.4 in the
Abaqus Benchmarks manual.

Before executing this script you must fetch the appropriate
files: abaqus fetch job=skewExample
 abaqus fetch job=skewExampleUtils.py
"""

from __future__ import print_function
import part
import mesh
from mesh import S4, S8R, STANDARD, STRUCTURED
import job
from skewExampleUtils import getResults, createXYPlot

Create a list of angle parameters and a list of
element type parameters.

angles = [90, 80, 60, 40, 30]
elemTypeCodes = [S4, S8R]

Open the model database.
openMdb('skew.cae')

model = mdb.models['Model-1']
part = model.parts['Plate']
feature = part.features['Shell planar-1']
assembly = model.rootAssembly
instance = assembly.instances['Plate-1']
job = mdb.jobs['skew']

allFaces = instance.faces
regions =(allFaces[0], allFaces[1], allFaces[2], allFaces[3])

175

Using a script to perform a parametric study

assembly.setMeshControls(regions=regions,
 technique=STRUCTURED)
face1 = allFaces.findAt((0.,0.,0.),)
face2 = allFaces.findAt((0.,1.,0.),)
face3 = allFaces.findAt((1.,1.,0.),)
face4 = allFaces.findAt((1.,0.,0.),)
allVertices = instance.vertices
v1 = allVertices.findAt((0.,0.,0.),)
v2 = allVertices.findAt((0.,.5,0.),)
v3 = allVertices.findAt((0.,1.,0.),)
v4 = allVertices.findAt((.5,1.,0.),)
v5 = allVertices.findAt((1.,1.,0.),)
v6 = allVertices.findAt((1.,.5,0.),)
v7 = allVertices.findAt((1.,0.,0.),)
v8 = allVertices.findAt((.5,0.,0.),)
v9 = allVertices.findAt((.5,.5,0.),)

Create a copy of the feature sketch to modify.

tmpSketch = model.ConstrainedSketch('tmp', feature.sketch)
v, d = tmpSketch.vertices, tmpSketch.dimensions

Create some dictionaries to hold results. Seed the
dictionaries with the theoretical results.

dispData, maxMomentData, minMomentData = {}, {}, {}
dispData['Theoretical'] = ((90, -.001478), (80, -.001409),
 (60, -0.000932), (40, -0.000349), (30, -0.000148))
maxMomentData['Theoretical'] = ((90, 0.0479), (80, 0.0486),
 (60, 0.0425), (40, 0.0281), (30, 0.0191))
minMomentData['Theoretical'] = ((90, 0.0479), (80, 0.0448),
 (60, 0.0333), (40, 0.0180), (30, 0.0108))

Loop over the parameters to perform the parameter study.

for elemCode in elemTypeCodes:

 # Convert the element type codes to strings.

 elemName = repr(elemCode)
 dispData[elemName], maxMomentData[elemName], \
 minMomentData[elemName] = [], [], []

 # Set the element type.

 elemType = mesh.ElemType(elemCode=elemCode,
 elemLibrary=STANDARD)
 assembly.setElementType(regions=(instance.faces,),
 elemTypes=(elemType,))

 for angle in angles:

 # Skew the geometry and regenerate the mesh.
 assembly.deleteMesh(regions=(instance,))

 d[0].setValues(value=angle,)
 feature.setValues(sketch=tmpSketch)
 part.regenerate()
 assembly.regenerate()
 assembly.setLogicalCorners(
 region=face1, corners=(v1,v2,v9,v8))

Abaqus Scripting User's Guide176

Using a script to perform a parametric study

 assembly.setLogicalCorners(
 region=face2, corners=(v2,v3,v4,v9))
 assembly.setLogicalCorners(
 region=face3, corners=(v9,v4,v5,v6))
 assembly.setLogicalCorners(
 region=face4, corners=(v8,v9,v6,v7))
 assembly.generateMesh(regions=(instance,))

 # Run the job, then process the results.

 job.submit()
 job.waitForCompletion()
 print('Completed job for %s at %s degrees' % (elemName,
 angle))
 disp, maxMoment, minMoment = getResults()
 dispData[elemName].append((angle, disp))
 maxMomentData[elemName].append((angle, maxMoment))
 minMomentData[elemName].append((angle, minMoment))

Plot the results.

createXYPlot((10,10), 'Skew 1', 'Displacement - 4x4 Mesh',
 dispData)
createXYPlot((160,10), 'Skew 2', 'Max Moment - 4x4 Mesh',
 maxMomentData)
createXYPlot((310,10), 'Skew 3', 'Min Moment - 4x4 Mesh',
 minMomentData)

The script imports two functions from skewExampleUtils. The functions do the following:

• Retrieve the displacement and calculate the maximum bending moment at the center of the plate.

• Display curves of theoretical and computed results in a new viewport.

"""
skewExampleUtils.py

Utilities for the scripting tutorial Skew Example.
"""

from abaqus import *
from abaqusConstants import *
import visualization

#~~
def getResults():

 """
 Retrieve the displacement and calculate the minimum
 and maximum bending moment at the center of plate.
 """

 from visualization import ELEMENT_NODAL

 # Open the output database.

 odb = visualization.openOdb('skew.odb')
 centerNSet = odb.rootAssembly.nodeSets['CENTER']
 frame = odb.steps['Step-1'].frames[-1]

177Abaqus Scripting User's Guide

Using a script to perform a parametric study

 # Retrieve Z-displacement at the center of the plate.

 dispField = frame.fieldOutputs['U']
 dispSubField = dispField.getSubset(region=centerNSet)
 disp = dispSubField.values[0].data[2]

 # Average the contribution from each element to the moment,
 # then calculate the minimum and maximum bending moment at
 # the center of the plate using Mohr's circle.

 momentField = frame.fieldOutputs['SM']
 momentSubField = momentField.getSubset(region=centerNSet,
 position=ELEMENT_NODAL)
 m1, m2, m3 = 0, 0, 0
 for value in momentSubField.values:
 m1 = m1 + value.data[0]
 m2 = m2 + value.data[1]
 m3 = m3 + value.data[2]
 numElements = len(momentSubField.values)
 m1 = m1 / numElements
 m2 = m2 / numElements
 m3 = m3 / numElements
 momentA = 0.5 * (abs(m1) + abs(m2))
 momentB = sqrt(0.25 * (m1 - m2)**2 + m3**2)
 maxMoment = momentA + momentB
 minMoment = momentA - momentB

 odb.close()

 return disp, maxMoment, minMoment

#~~~
def createXYPlot(vpOrigin, vpName, plotName, data):

 """
 Display curves of theoretical and computed results in
 a new viewport.
 """

 from visualization import USER_DEFINED

 vp = session.Viewport(name=vpName, origin=vpOrigin,
 width=150, height=100)
 xyPlot = session.XYPlot(plotName)
 chart = list(xyPlot.charts.values())[0]
 curveList = []
 for elemName, xyValues in sorted(data.items()):
 xyData = session.XYData(elemName, xyValues)
 curve = session.Curve(xyData)
 curveList.append(curve)
 chart.setValues(curvesToPlot=curveList)
 chart.axes1[0].axisData.setValues(useSystemTitle=False,title='Skew Angle')
 chart.axes2[0].axisData.setValues(useSystemTitle=False,title=plotName)
 vp.setValues(displayedObject=xyPlot)

#~~
def createModel():

 """
 Create the skew example model, including material, step, load, bc, and job.

Abaqus Scripting User's Guide178

Using a script to perform a parametric study

 """

 import regionToolset, part, step, mesh

 # Create the Plate
 m = mdb.models['Model-1']
 s = m.ConstrainedSketch(name='__profile__', sheetSize=5.0)
 g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints
 s.sketchOptions.setValues(sheetSize=5.0, gridSpacing=0.1, grid=ON,
 gridFrequency=2, constructionGeometry=ON,
 dimensionTextHeight=0.1, decimalPlaces=2)
 s.setPrimaryObject(option=STANDALONE)
 s.rectangle(point1=(0.0, 0.0), point2=(1.0, 1.0))
 s.delete(objectList=(c[21], c[18], c[19], c[20]))
 s.HorizontalConstraint(entity=g.findAt((0.5, 0.0)))
 s.FixedConstraint(entity=v.findAt((0.0, 0.0)))
 s.FixedConstraint(entity=v.findAt((1.0, 0.0)))
 s.ParallelConstraint(entity1=g.findAt((0.0, 0.5)),
 entity2=g.findAt((1.0,0.5)))
 s.AngularDimension(line1=g.findAt((0.0, 0.5)), line2=g.findAt((0.5, 0.0)),

 textPoint=(0.2, 0.2), value=90.0)
 p = m.Part(name='Plate', dimensionality=THREE_D, type=DEFORMABLE_BODY)
 p.BaseShell(sketch=s)
 s.unsetPrimaryObject()
 vp = session.viewports['Viewport: 1']
 vp.setValues(displayedObject=p)
 del mdb.models['Model-1'].sketches['__profile__']

 # Create the Steel material
 m.Material('Steel')
 m.materials['Steel'].Elastic(table=((30.e6, 0.3),))
 m.HomogeneousShellSection(name='Shell', preIntegrate=OFF, material='Steel',

 thickness=0.01, poissonDefinition=DEFAULT,
 temperature=GRADIENT, integrationRule=SIMPSON,
numIntPts=5)

 # Assign Steel to the plate
 p = mdb.models['Model-1'].parts['Plate']
 region =(None, None, p.faces, None)
 p.SectionAssignment(region=region, sectionName='Shell')

 # Create the assembly
 a = m.rootAssembly
 vp.setValues(displayedObject=a)
 a.DatumCsysByDefault(CARTESIAN)
 a.Instance(name='Plate-1', part=p, dependent=OFF)
 pi = a.instances['Plate-1']

 # Create the step
 m.StaticStep(name='Step-1', previous='Initial',
 description='Apply pressure', timePeriod=1, initialInc=1)
 vp.assemblyDisplay.setValues(step='Step-1')
 m.fieldOutputRequests['F-Output-1'].setValues(frequency=1, variables=('U',))

 m.FieldOutputRequest(name='F-Output-2', createStepName='Step-1',
 variables=('SF',), position=NODES)
 del mdb.models['Model-1'].historyOutputRequests['H-Output-1']

179Abaqus Scripting User's Guide

Using a script to perform a parametric study

 # Create the displacement BC
 e = pi.edges
 edges = e.findAt(((0.25, 0.0, 0.0),), ((1.0, 0.25, 0.0),),
 ((0.75, 1.0, 0.0),), ((0.0, 0.75, 0.0),),)
 region =(None, edges, None, None)
 m.DisplacementBC(name='Pinned', createStepName='Step-1', region=region,
 u1=0.0, u2=0.0, u3=0.0)

 # Create the Pressure load
 s1 = pi.faces
 side1Faces1 = s1.findAt(((0.333333333333333, 0.333333333333333, 0.0),
 (0.0, 0.0, 1.0),),)
 region = regionToolset.Region(side1Faces=side1Faces1)
 m.Pressure(name='Load-1', createStepName='Step-1', region=region,
 distributionType=UNIFORM, magnitude=1.0, amplitude=UNSET)

 # Partition the face
 f1, e1 = pi.faces, pi.edges
 faces = (f1.findAt(coordinates=(0.33333333333, 0.33333333333, 0.0)),)
 pt1 = pi.InterestingPoint(edge=e1.findAt(coordinates=(
 0.0, 0.75, 0.0)), rule=MIDDLE)
 pt2 = pi.InterestingPoint(edge=e1.findAt(coordinates=(
 1.0, 0.25, 0.0)), rule=MIDDLE)
 a.PartitionFaceByShortestPath(faces=faces, point1=pt1, point2=pt2)
 faces = (f1.findAt(coordinates=(0.33333333333, 0.66666666667, 0.0)),
 f1.findAt(coordinates=(0.66666666667, 0.33333333333, 0.0)))
 pt1 = pi.InterestingPoint(edge=e1.findAt(coordinates=(
 0.75, 1.0, 0.0)), rule=MIDDLE)
 pt2 = pi.InterestingPoint(edge=e1.findAt(coordinates=(
 0.25, 0.0, 0.0)), rule=MIDDLE)
 a.PartitionFaceByShortestPath(faces=faces, point1=pt1, point2=pt2)

 # Create the Geometry set CENTER
 verts = pi.vertices.findAt(((0.5, 0.5, 0.0),))
 a.Set(name='CENTER', vertices=verts)

 # Create the mesh
 a.seedPartInstance(regions=(pi,), size=0.25)
 a.generateMesh(regions=(pi,))

 # Create the job
 mdb.Job(name='skew', model='Model-1', type=ANALYSIS,
explicitPrecision=SINGLE,
 description='', userSubroutine='', numCpus=1, scratch='',
 echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF)

Abaqus Scripting User's Guide180

Using a script to perform a parametric study

Editing display preferences and GUI settings

You can use the Abaqus Scripting Interface to edit the abaqus_2025.gpr file, which includes settings that control
many default display preferences and GUI settings in the Abaqus/CAE user interface. To enable editing of this file,
you must import the caePrefsAccess module. This section describes the structure of the abaqus_2025.gpr
file and provides an overview of customizing its settings; for more detailed information about the functions available
in the caePrefsAccess module, see Abaqus/CAE Display Preferences commands.

Warning:

Editing the abaqus_2025.gpr file is for experienced users only. Do not use the functions in the
caePrefsAccess module unless you are comfortable with the Abaqus Scripting Interface and understand
the structure of the abaqus_2025.gpr file. In addition, you should not have Abaqus/CAE running when you
make changes to the graphical preferences file.

You can retrieve the location of your abaqus_2025.gpr file using the getGuiPrefsFileName function. The
file records default settings in two sections: display options reside in the sessionOptions section, and GUI settings
reside in the guiPreferences section. Editing the options in one section does not have any effect on the options
in the other section.

sessionOptions

The session options consist of the settings that you can save using the File->Save Display Options menu option.
In Abaqus/CAE you can save these options in the current directory or in your home directory.

You can display and edit session options using the openSessionOptions function.

> abaqus Python
...
>>> import caePrefsAccess
>>> sessionOptions = caePrefsAccess.openSessionOptions()
>>> caePrefsAccess.printValuesList(sessionOptions)
...
sessionOptions['session.animationOptions']\
 ['frameCounter']:[type:bool] True
sessionOptions['session.animationOptions']\
 ['frameRate']:[type:int] 100
sessionOptions['session.aviOptions']['compressionMethod']:\
 [type:SymbolicConstant] CODEC
sessionOptions['session.aviOptions']['compressionQuality']:[type:int] 75
...

The following statement changes the frame rate to 50. You should confirm that the data type you specify matches
the type of the existing value.

>>> sessionOptions['session.animationOptions']\
 ['frameRate'] = 50

You can save the options you change to the original file by issuing the following command:

>>> sessionOptions.save()

guiPreferences

The GUI preferences control many default behaviors in the Abaqus/CAE graphical interface, including size and
location of the main window, size and location of the dialog boxes within Abaqus/CAE, and the number of recent
files listed in the Start Session dialog box and in the File menu.

181

Editing display preferences and GUI settings

Abaqus/CAE saves guiPreferences settings to your home directory when you exit the application. A
separate guiPreferences record is stored in the preferences file for each display you use, so you must specify
the displayName you want to modify when you open the guiPreferences settings. You can obtain a list of
the available displayName settings by calling the getDisplayNamesInGuiPreferences function, and
you can edit these settings by using the openGuiPreferences function and specifying the displayName of
the settings that you want to modify.

In the following example, the openGuiPreferences function is used to examine the X- and Y-location and
the height and width of the following components of Abaqus/CAE:

• Select Font dialog box

• Abaqus/CAE main window

• Adaptivity Plotter plug-in

• Amplitude Plotter plug-in

• Create Weld dialog box

• Copy Annotation dialog box

The sample statements follow:

> abaqus Python
...
>>> import caePrefsAccess
>>> from caePrefsAccess import openGuiPreferences, CURRENT, HOME
>>> from caePrefsAccess import getGuiPrefsFileName,
 getDisplayNamesInGuiPreferences
>>> from caePrefsAccess import printValuesList
>>> guiPrefsFileName = getGuiPrefsFileName()
>>> dispNames = getDisplayNamesInGuiPreferences(guiPrefsFileName)
>>> print(dispNames)
['preludesim']
>>> displayName = dispNames[0]
>>> guiPrefs = openGuiPreferences(displayName)
>>> printValuesList(guiPrefs)
...
guiPreferences['Abaqus/CAE']['Geometry']['AFXFontSelectorDialog text']:\
 [type:str] '617,298,281,350'
guiPreferences['Abaqus/CAE']['Geometry']['AFXMainWindow']:[type:str] \
 '193,67,1036,831'
guiPreferences['Abaqus/CAE']['Geometry']['AdaptivityPlotter']:[type:str] \

 '11,156,226,240'
guiPreferences['Abaqus/CAE']['Geometry']['Amplitude Plotter']:[type:str] \

 '1105,189,312,290'
guiPreferences['Abaqus/CAE']['Geometry']['CREATE_Weld']:[type:str] \
 '10,276,377,560'
guiPreferences['Abaqus/CAE']['Geometry']['Copy MDB Annotation']:[type:str]
 \
 '122,273,160,79'

You can change the geometry of the Abaqus/CAE main window by issuing a command like the following:

>>> guiPrefs['Abaqus/CAE']['Geometry']['AFXMainWindow'] = '193,67,800,600'

You can save the GUI preferences you change to the original file by issuing the following command:

>>> guiPrefs.save()

Abaqus Scripting User's Guide182

Editing display preferences and GUI settings

Accessing an Output Database

This section describes how you access the data in an output database using either the Abaqus Scripting Interface
or the C++ Application Programming Interface (API).
You can read model data and field and history data from an output database. You can also write field and history
data to an output database.\

The Abaqus Scripting Interface commands that read and write data from an output database are described in
Odb commands.

The C++ commands that read and write data from an output database are described in Odb commands.

In this section:

• Using the Abaqus Scripting Interface to access an output database

• Using C++ to access an output database

183

Accessing an Output Database

Using the Abaqus Scripting Interface to access an output database

The following sections describe the architecture of an output database and how to use the Abaqus Scripting
Interface to access data from an output database.

In this section:

• What do you need to access the output database?

• How the object model for the output database relates to commands

• Object model for the output database

• Executing a script that accesses an output database

• Reading from an output database

• Writing to an output database

• Exception handling in an output database

• Computations with Abaqus results

• Improving the efficiency of your scripts

• Example scripts that access data from an output database

Abaqus Scripting User's Guide184

What do you need to access the output database?

To use the Abaqus Scripting Interface to access an output database, you need to understand the following:

• How an Abaqus analysis outputs data to the output database as well as the difference between field data, history
data, and model data. The output database is described in detail in Output to the Output Database and Assembly

Definition.

• How to program using Python. An introduction to the Python programming language is provided in Introduction

to Python.

• How to use Abaqus objects. Abaqus objects are explained in Using Python and the Abaqus Scripting Interface.

185

What do you need to access the output database?

How the object model for the output database relates to commands

You need to understand the object model for the output database both to read data from it and to write data to it. An
object model describes the relationship between objects. The object model for the Abaqus/CAE model is described in
The Abaqus object model.

For example, consider the object model for field output data shown in Figure 1. The Odb object at the top of the figure
is created when you issue the command to open or create an output database. As you move down the object model, an
OdbStep object is a member of the Odb object; similarly, a Frame object is a member of the OdbStep object. The
FieldOutput object has two members—fieldValue and fieldLocation.

steps

 = Container

 = Singular object

odb

rootAssembly

parts

sections

Model Data

frames

historyRegions

Results Data

point

historyOutputs

fieldOutputs

materials

Figure 1:The output database object model.

The object model translates directly to the structure of an Abaqus Scripting Interface command. For example, the
following command refers to a Frame object in the sequence of frames contained in an OdbStep object:

odb.steps['10 hz vibration'].frames[3]

Similarly, the following command refers to the sequence of field data contained in a FieldOutput object.

odb.steps['10 hz vibration'].frames[3].\
 fieldOutputs['U'].values[47]

You use commands to access objects by stepping through the hierarchy of objects in the object model. The Access
and Path descriptions in Odb commands describe the interface definition of the command. The interface definition
of the command reflects the hierarchy of objects in the object model. If you are unsure of the structure of the output
database, you can issue the objectname.__members__ command from the command line interface to view the
members of an object.

Abaqus Scripting User's Guide186

How the object model for the output database relates to commands

Object model for the output database

An output database generated from an Abaqus analysis contains both model and results data.

Model data

Model data describe the parts and part instances that make up the root assembly; for example, nodal
coordinates, set definitions, and element types.

Results data

Results data describe the results of your analysis; for example, stresses, strains, and displacements. You
use output requests to configure the contents of the results data. Results data can be either field output
data or history output data.

Note: For a description of object models, see About the Abaqus object model.

You can find more information on the format of the output database in Output to the Output Database.

In this section:

• Model data

• Results data

187

Model data

Model data define the model used in the analysis; for example, the parts, materials, initial and boundary conditions,
and physical constants. More information about model data can be found in The Abaqus object model and Assembly

Definition.

Abaqus does not write all the model data to the output database; for example, you cannot access loads, and only certain
interactions are available. Model data that are stored in the output database include parts, the root assembly, part
instances, regions, materials, sections, section assignments, and section categories, each of which is stored as an Abaqus
Scripting Interface object. These components of model data are described below.

Parts

A part in the output database is a finite element idealization of an object. Parts are the building blocks of an
assembly and can be either rigid or deformable. Parts are reusable; they can be instanced multiple times in the
assembly. Parts are not analyzed directly; a part is like a blueprint for its instances. A part is stored in an output
database as a collection of nodes, elements, surfaces, and sets.

The root assembly

The root assembly is a collection of positioned part instances. An analysis is conducted by defining boundary
conditions, constraints, interactions, and a loading history for the root assembly. The output database object
model contains only one root assembly.

Part instances

A part instance is a usage of a part within the assembly. All characteristics (such as mesh and section definitions)
defined for a part become characteristics for each instance of that part—they are inherited by the part instances.
Each part instance is positioned independently within the root assembly.

Materials

Materials contain material models comprised of one or more material property definitions. The same material
models may be used repeatedly within a model; each component that uses the same material model shares
identical material properties. Many materials may exist within a model database, but only the materials that are
used in the assembly are copied to the output database.

Sections

Sections add the properties that are necessary to define completely the geometric and material properties of an
element. Various element types require different section types to complete their definitions. For example, shell
elements in a composite part require a section that provides a thickness, multiple material models, and an
orientation for each material model; all these pieces combine to complete the composite shell element definition.
Like materials, only those sections that are used in the assembly are copied to the output database.

Section assignments

Section assignments link section definitions to the regions of part instances. Section assignments in the output
database maintain this association. Sections are assigned to each part in a model, and the section assignments
are propagated to each instance of that part.

Abaqus Scripting User's Guide188

Model data

Section categories

You use section categories to group the regions of the model that use the same section definitions; for example,
the regions that use a shell section with five section points. Within a section category, you use the section points
to identify the location of results; for example, you can associate section point 1 with the top surface of a shell
and section point 5 with the bottom surface.

Analytical rigid surface

Analytical rigid surfaces are geometric surfaces with profiles that can be described with straight and curved line
segments. Using analytical rigid surfaces offers important advantages in contact modeling.

Rigid bodies

You use rigid bodies to define a collection of nodes, elements, and/or surfaces whose motion is governed by the
motion of a single node, called the rigid body reference node.

Pretension Sections

Pretension sections are used to associate a pre-tension node with a pre-tension section. The pre-tension section
can be defined using a surface for continuum elements or using an element for truss or beam elements.

Interactions

Interactions are used to define contact between surfaces in an analysis. Only contact interactions defined using
contact pairs are written to the output database.

Interaction properties

Interaction properties define the physical behavior of surfaces involved in an interaction. Only tangential friction
behavior is written to the output database.

Figure 1 shows the model data object model.

189Abaqus Scripting User's Guide

Model data

steps

 = Container

 = Singular object

odb

nodeSets

elementSets

surfaces

instances

nodeSets

elementSets

surfaces

elements

nodes

rootAssembly

parts

sectionCategories

description

Model Data

Results Data

HistoryRegion

fieldOutputs

point

historyOutputs

materials

name

Step

frames

historyRegions

Frame

Figure 1:The model data object model.

The objects stored as model data in an output database are similar to the objects stored in an Abaqus/CAE model
database. However, the output database does not require a model name because an analysis job always refers to a single
model and the resulting output database can contain only one model. For example, the following Abaqus Scripting
Interface statements refer to an Instance object in the model database:

mdb = openMdb(pathName='/users/smith/mdb/hybridVehicle')
myModel = mdb.models['Transmission']
myPart = myModel.rootAssembly.instances['housing']

Similar statements refer to an Instance object in the output database.

odb = openOdb(path='/users/smith/odb/transmission.odb')
myPart = odb.rootAssembly.instances['housing']

You can use the prettyPrint method to display a text representation of an output database and to view the structure
of the model data in the object model. For example, the following shows the output from prettyPrint applied to
the output database created by the Abaqus/CAE cantilever beam tutorial:

from odbAccess import *
from textRepr import *
odb=openOdb('Deform.odb')
prettyPrint(odb,2)
({'analysisTitle': 'Cantilever beam tutorial',
 'closed': False,
 'description': 'DDB object',
 'diagnosticData': ({'analysisErrors': 'OdbSequenceAnalysisError object',
 'analysisWarnings': 'OdbSequenceAnalysisWarning object',
 'jobStatus': JOB_STATUS_COMPLETED_SUCCESSFULLY,
 'jobTime': 'OdbJobTime object',
 'numberOfAnalysisErrors': 0,
 'numberOfAnalysisWarnings': 0,
 'numberOfSteps': 1,
 'numericalProblemSummary': 'OdbNumericalProblemSummary
object',
 'steps': 'OdbSequenceDiagnosticStep object'}),
 'isReadOnly': False,
 'jobData': ({'analysisCode': ABAQUS_STANDARD,

Abaqus Scripting User's Guide190

Model data

 'creationTime': 'date time year',
 'machineName': '',
 'modificationTime': 'date time year',
 'name': 'Deform.odb',
 'precision': SINGLE_PRECISION,
 'productAddOns': 'tuple object',
 'version': 'Abaqus/Standard release'}),
 'name': 'Deform.odb',
 'parts': {'BEAM': 'Part object'},
 'path': 'C:/Deform.odb',
 'rootAssembly': ({'connectorOrientations': 'ConnectorOrientationArray object',

 'datumCsyses': 'Repository object',
 'elementSet': 'Repository object',
 'elementSets': 'Repository object',
 'elements': 'OdbMeshElementArray object',
 'instance': 'Repository object',
 'instances': 'Repository object',
 'name': 'ASSEMBLY',
 'nodeSet': 'Repository object',
 'nodeSets': 'Repository object',
 'nodes': 'OdbMeshNodeArray object',
 'sectionAssignments': 'Sequence object',
 'surface': 'Repository object',
 'surfaces': 'Repository object'}),
 'sectionCategories': {'solid < STEEL >': 'SectionCategory object'},
 'sectorDefinition': None,
 'steps': {'Beamload': 'OdbStep object'},
 'userData': ({'annotations': 'Repository object',
 'xyData': 'Repository object',
 'xyDataObjects': 'Repository object'})})

For more information, see prettyPrint(...).

191Abaqus Scripting User's Guide

Model data

Results data

Results data describe the results of your analysis. Abaqus organizes the analysis results in an output database into the
following components:

Steps

An Abaqus analysis contains a sequence of one or more analysis steps. Each step is associated with an analysis
procedure.

Frames

Each step contains a sequence of frames, where each increment of the analysis that resulted in output to the
output database is called a frame. In a frequency or buckling analysis each eigenmode is stored as a separate
frame. Similarly, in a steady-state harmonic response analysis each frequency is stored as a separate frame.

Field output

Field output is intended for infrequent requests for a large portion of the model and can be used to generate
contour plots, animations, symbol plots, and displaced shape plots in the Visualization module of Abaqus/CAE.
You can also use field output to generate an X–Y data plot. Only complete sets of basic variables (for example,
all the stress or strain components) can be requested as field output. Field output is composed of a “cloud of data
values” (e.g., stress tensors at each integration point for all elements). Each data value has a location, type, and
value. You use the regions defined in the model data, such as an element set, to access subsets of the field output
data. Figure 1 shows the field output data object model within an output database.

steps

historyRegions

 = Container

 = Singular object

odb

rootAssembly

parts

sections

Model Data

Results Data

frames

fieldValues

fieldOutputs

materials

Figure 1:The field output data object model.

History output

History output is output defined for a single point or for values calculated for a portion of the model as a whole,
such as energy. History output is intended for relatively frequent output requests for small portions of the model
and can be displayed in the form of X–Y data plots in the Visualization module of Abaqus/CAE. Individual
variables (such as a particular stress component) can be requested.

Depending on the type of output expected, a HistoryRegion object can be defined for one of the following:

• a node

• an integration point

• a region

Abaqus Scripting User's Guide192

Results data

• the whole model

The output from all history requests that relate to a particular point or region is then collected in one HistoryRegion
object. Figure 2 shows the history output data object model within an output database.

steps

frames

 = Container

 = Singular object

odb

rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions

point

historyOutputs

fieldOutputs

materials

Figure 2:The history output data.

193Abaqus Scripting User's Guide

Results data

Executing a script that accesses an output database

If your script accesses and manipulates data in an output database, you can use either of the following methods to
execute the script:

• Type abaqus pythonscriptname.py at the system prompt.

• Select File->Run Script from the Abaqus/CAE main menu bar, and select the file to execute.

Your script must contain the following statement:

from odbAccess import *

In addition, if your script refers to any of the Symbolic Constants defined in the Abaqus Scripting Interface, your script
must contain the following statement:

from abaqusConstants import *

If your script accesses or creates material objects, or if it accesses or creates section or beam profile objects, it must
contain the following statements, respectively:

from odbMaterial import *
from odbSection import *

Abaqus Scripting User's Guide194

Executing a script that accesses an output database

Reading from an output database

The following sections describe how you use Abaqus Scripting Interface commands to read data from an output
database.

In this section:

• The Abaqus/CAE Visualization module tutorial output database

• Making the Odb commands available

• Opening an output database

• Reading model data

• Reading results data

• Reading field output data

• Using regions to read a subset of field output data

• Reading history output data

• An example of reading node and element information from an output database

• An example of reading field data from an output database

195

The Abaqus/CAE Visualization module tutorial output database

The following sections describe how you can access the data in an output database. Examples are included that refer
to the Abaqus/CAE Visualization module tutorial output database, viewer_tutorial.odb. This database is
generated by the input file from Case 2 of the example problem, Indentation of an elastomeric foam specimen with a

hemispherical punch. The problem studies the behavior of a soft elastomeric foam block indented by a heavy metal
punch. The tutorial shows how you can use the Visualization module to view the data in the output database. The
tutorial describes how you can choose the variable to display, how you can step through the steps and frames in the
analysis, and how you can create X–Y data from history output.

You are encouraged to copy the tutorial output database to a local directory and experiment with the Abaqus Scripting
Interface. The output database and the example scripts from this guide can be copied to the user's working directory
using the abaqus fetch utility:

abaqus fetch job=name

where name.py is the name of the script or name.odb is the name of the output database (see Fetching Sample Input

Files). For example, use the following command to retrieve the tutorial output database:

abaqus fetch job=viewer_tutorial

Abaqus Scripting User's Guide196

The Abaqus/CAE Visualization module tutorial output database

Making the Odb commands available

To make the Odb commands available to your script, you first need to import the odbAccess module using the
following statements:

from odbAccess import *
from abaqusConstants import *

To make the material and section Odb commands available to your script, you also need to import the relevant module
using the following statements:

from odbMaterial import *
from odbSection import *

197

Making the Odb commands available

Opening an output database

You use the openOdb method to open an existing output database. For example, the following statement opens the
output database used by the Abaqus/CAE Visualization module tutorial:

odb = openOdb(path='viewer_tutorial.odb')

After you open the output database, you can access its contents using the methods and members of the Odb object
returned by the openOdb method. In the above example the Odb object is referred to by the variable odb. For a full
description of the openOdb command, see openOdb.

Abaqus Scripting User's Guide198

Opening an output database

Reading model data

The following list describes the objects in model data and the commands you use to read model data. Many of the
objects are repositories, and you will find the keys() method useful for determining the names of the objects in the
repository. For more information, see Using dictionaries and Repositories.

The root assembly

An output database contains only one root assembly. You access the root assembly through the OdbAssembly
object.

myAssembly = odb.rootAssembly

Part instances

Part instances are stored in the instances repository under the OdbAssembly object. The following statements
display the repository keys of the part instances in the tutorial output database:

for instanceName in odb.rootAssembly.instances.keys():
 print(instanceName)

The output database contains only one part instance, and the resulting output is

PART-1-1

Regions

Regions in the output database are OdbSet objects. Regions refer to the part and assembly sets stored in the
output database. A part set refers to elements or nodes in an individual part and appears in each instance of the
part in the assembly. An assembly set refers to the elements or nodes in part instances in the assembly. A region
can be one of the following:

• A node set

• An element set

• A surface

For example, the following statement displays the node sets in the OdbAssembly object:

print('Node sets = ',odb.rootAssembly.nodeSets.keys())

The resulting output is

Node sets = ['ALL NODES']

The following statements display the node sets and the element sets in the PART-1-1 part instance:

print('Node sets = ',odb.rootAssembly.instances[
 'PART-1-1'].nodeSets.keys())
print('Element sets = ',odb.rootAssembly.instances[
 'PART-1-1'].elementSets.keys())

The resulting output is

Node sets = ['ALLN', 'BOT', 'CENTER', 'N1', 'N19', 'N481',
 'N499', 'PUNCH', 'TOP']
Element sets = ['CENT', 'ETOP', 'FOAM', 'PMASS', 'UPPER']

199

Reading model data

The following statement assigns a variable (topNodeSet) to the 'TOP' node set in the PART-1-1 part
instance:

topNodeSet = odb.rootAssembly.instances[
 'PART-1-1'].nodeSets['TOP']

The type of the object to which topNodeSet refers is OdbSet. After you create a variable that refers to a
region, you can use the variable to refer to a subset of field output data, as described in Using regions to read a

subset of field output data.

Materials

You can read material data from an output database.

Materials are stored in the materials repository under the Odb object.

Access the materials repository using the command:

 allMaterials = odb.materials
 for materialName in allMaterials.keys():
 print('Material Name : ',materialName)

To print isotropic elastic material properties in a material object:

 for material in allMaterials.values():
 if hasattr(material,'elastic'):
 elastic = material.elastic
 if elastic.type == ISOTROPIC:
 print('isotropic elastic behavior, type = %s' \
 % elastic.moduli)
 title1 = 'Young modulus Poisson\'s ratio '
 title2 = ''
 if elastic.temperatureDependency == ON:
 title2 = 'Temperature '
 dep = elastic.dependencies
 title3 = ''
 for x in range(dep):
 title3 += ' field # %d' % x
 print('%s %s %s' % (title1,title2,title3))
 for dataline in elastic.table:
 print dataline

Some Material definitions have suboptions. For example, to access the smoothing type used for biaxial test data
specified for a hyperelastic material:

 if hasattr(material,'hyperelastic'):
 hyperelastic = material.hyperelastic
 testData = hyperelastic.testData
 if testData == ON:
 if hasattr(hyperelastic,'biaxialTestData'):
 biaxialTestData = hyperelastic.biaxialTestData
 print('smoothing type : ',biaxialTestData.smoothing)

Material commands describes the Material object commands in more detail.

Sections

You can read section data from an output database.

Sections are stored in the sections repository under the Odb object.

Abaqus Scripting User's Guide200

Reading model data

The following statements display the repository keys of the sections in an output database:

 allSections = odb.sections
 for sectionName in allSections.keys():
 print('Section Name : ',sectionName)

The Section object can be one of the various section types. The type command provides information on the
section type. For example, to determine whether a section is of type “homogeneous solid section” and to print
its thickness and associated material name:

 for mySection in allSections.values():
 if type(mySection) == HomogeneousSolidSectionType:
 print('material name = ', mySection.material)
 print('thickness = ', mySection.thickness)

Similarily, to access the beam profile repository:

 allProfiles = odb.profiles.values()
 numProfiles = len(allProfiles)
 print('Total Number of profiles in the ODB : %d' \
 % numProfiles)

The Profile object can be one of the various profile types. The type command provides information on the profile
type. For example, to output the radius of all circular profiles in the odb:

 for myProfile in allProfiles:
 if type(myProfile) == CircularProfileType:
 print('profile name = %s, radius = %8.3f' \
 % (myProfile.name,myProfile.r))

Section assignments

Section assignments are stored in the odbSectionAssignmentArray repository under the OdbAssembly object.

All elements in an Abaqus analysis need to be associated with section and material properties. Section assignments
provide the relationship between elements in a part instance and their section properties. The section properties
include the associated material name. To access the sectionAssignments repository from the PartInstance object:

 instances = odb.rootAssembly.instances
 for instance in instances.values():
 assignments = instance.sectionAssignments
 print('Instance : ',instance.name)
 for sa in assignments:
 region = sa.region
 elements = region.elements
 print(' Section : ',sa.sectionName)
 print(' Elements associated with this section : ')
 for e in elements:
 print(' label : ',e.label)

Analytical rigid surfaces

Analytical rigid surfaces are defined under a OdbPart object or a OdbInstance object. Each OdbPart or OdbInstance
can have only one analytical rigid surface.

Rigid bodies

Rigid bodies are stored in the odbRigidBodyArray. The OdbPart object, OdbInstance object, and OdbAssembly
object each have an odbRigidBodyArray.

201Abaqus Scripting User's Guide

Reading model data

Pretension sections

Pretension sections are stored in odbPretensionSectionArray under the OdbAssembly object.

Abaqus Scripting User's Guide202

Reading model data

Reading results data

The following list describes the objects in results data and the commands you use to read results data. As with model
data you will find it useful to use the keys() method to determine the keys of the results data repositories.

Steps

Steps are stored in the steps repository under the Odb object. The key to the steps repository is the name of the
step. The following statements print out the keys of each step in the repository:

for stepName in odb.steps.keys():
 print(stepName)

The resulting output is

Step-1
Step-2
Step-3

Note:

An index of 0 in a sequence refers to the first value in the sequence, and an index of −1 refers to the last
value. You can use the following syntax to refer to an individual item in a repository:

step1 = odb.steps.values()[0]
print(step1.name)

The resulting output is

Step-1

Frames

Each step contains a sequence of frames, where each increment of the analysis (or each mode in an eigenvalue
analysis) that resulted in output to the output database is called a frame. The following statement assigns a
variable to the last frame in the first step:

lastFrame = odb.steps['Step-1'].frames[-1]

203

Reading results data

Reading field output data

Field output data are stored in the fieldOutputs repository under the OdbFrame object. The key to the repository is the
name of the variable. The following statements list all the variables found in the last frame of the first step (the statements
use the variable lastFrame that we defined previously):

for fieldName in lastFrame.fieldOutputs.keys():
 print(fieldName)

COPEN TARGET/IMPACTOR
CPRESS TARGET/IMPACTOR
CSHEAR1 TARGET/IMPACTOR
CSLIP1 TARGET/IMPACTOR
LE
RF
RM3
S
U
UR3

Different variables can be written to the output database at different frequencies. As a result, not all frames will contain
all the field output variables.

You can use the following to view all the available field data in a frame:

For each field output value in the last frame,
print the name, description, and type members.

for f in lastFrame.fieldOutputs.values():
 print(f.name, ':', f.description)
 print('Type: ', f.type)

 # For each location value, print the position.

 for loc in f.locations:
 print('Position:',loc.position)
 print()

The resulting print output lists all the field output variables in a particular frame, along with their type and position.

COPEN TARGET/IMPACTOR : Contact opening
Type: SCALAR
Position: NODAL

CPRESS TARGET/IMPACTOR : Contact pressure
Type: SCALAR
Position: NODAL

CSHEAR1 TARGET/IMPACTOR : Frictional shear
Type: SCALAR
Position: NODAL

CSLIP1 TARGET/IMPACTOR : Relative tangential motion direction 1
Type: SCALAR
Position: NODAL

LE : Logarithmic strain components
Type: TENSOR_2D_PLANAR
Position: INTEGRATION_POINT

RF : Reaction force

Abaqus Scripting User's Guide204

Reading field output data

Type: VECTOR
Position: NODAL

RM3 : Reaction moment
Type: SCALAR
Position: NODAL

S : Stress components
Type: TENSOR_2D_PLANAR
Position: INTEGRATION_POINT

U : Spatial displacement
Type: VECTOR
Position: NODAL

UR3 : Rotational displacement
Type: SCALAR
Position: NODAL

In turn, a FieldOutput object has a member values that is a sequence of FieldValue objects that contain data. Each data
value in the sequence has a particular location in the model. You can query the FieldValue object to determine the
location of a data value; for example,

displacement=lastFrame.fieldOutputs['U']
fieldValues=displacement.values

For each displacement value, print the nodeLabel
and data members.

for v in fieldValues:
 print('Node = %d U[x] = %6.4f, U[y] = %6.4f' % (v.nodeLabel,
 v.data[0], v.data[1]))

The resulting output is

Node = 1 U[x] = 0.0000, U[y] = -76.4580
Node = 3 U[x] = -0.0000, U[y] = -64.6314
Node = 5 U[x] = 0.0000, U[y] = -52.0814
Node = 7 U[x] = -0.0000, U[y] = -39.6389
Node = 9 U[x] = -0.0000, U[y] = -28.7779
Node = 11 U[x] = -0.0000, U[y] = -20.3237...

The data in the FieldValue object depend on the field output variable, which is displacement in the above example.
The following command lists all the members of a particular FieldValue object:

fieldValues[0].__members__

The resulting output is

['instance', 'elementLabel', 'nodeLabel', 'position',
 'face', 'integrationPoint', 'sectionPoint',
'localCoordSystem', 'type', 'data', 'magnitude',
 'mises', 'tresca', 'press', 'inv3', 'maxPrincipal',
 'midPrincipal', 'minPrincipal', 'maxInPlanePrincipal',
 'minInPlanePrincipal', 'outOfPlanePrincipal']

Where applicable, you can obtain section point information from the FieldValue object.

205Abaqus Scripting User's Guide

Reading field output data

Using regions to read a subset of field output data

After you have created an OdbSet object using model data, you can use the getSubset method to read only the data
corresponding to that region. Typically, you will be reading data from a region that refers to a node set or an element
set. For example, the following statements create a variable called center that refers to the node set PUNCH at the
center of the hemispherical punch. In a previous section you created the displacement variable that refers to the
displacement of the entire model in the final frame of the first step. Now you use the getSubset command to get
the displacement for only the center region.

center = odb.rootAssembly.instances['PART-1-1'].nodeSets['PUNCH']
centerDisplacement = displacement.getSubset(region=center)
centerValues = centerDisplacement.values
for v in centerValues:
 print(v.nodeLabel, v.data)

The resulting output is

1000 array([0.0000, -76.4555], 'd')

The arguments to getSubset are a region, an element type, a position, or section point data. The following is a
second example that uses an element set to define the region and generates formatted output. For more information on
tuples, the len() function, and the range() function, see Sequences and Sequence operations.

topCenter = \
 odb.rootAssembly.instances['PART-1-1'].elementSets['CENT']
stressField = odb.steps['Step-2'].frames[3].fieldOutputs['S']

The following variable represents the stress at
integration points for CAX4 elements from the
element set "CENT."

field = stressField.getSubset(region=topCenter,
 position=INTEGRATION_POINT, elementType = 'CAX4')
fieldValues = field.values
for v in fieldValues:
 print('Element label = ', v.elementLabel)
 if v.integrationPoint:
 print('Integration Point = ', v.integrationPoint)
 else:
 print()
For each tensor component.

 for component in v.data:

Print using a format. The comma at the end of the
print statement suppresses the carriage return.

 print('%-10.5f' % component)

After each tuple has printed, print a carriage return.

 print()

The resulting output is

Element label = 1 Integration Point = 1
S : 0.01230 -0.05658 0.00892 -0.00015
Element label = 1 Integration Point = 2
S : 0.01313 -0.05659 0.00892 -0.00106
Element label = 1 Integration Point = 3
S : 0.00619 -0.05642 0.00892 -0.00023
Element label = 1 Integration Point = 4

Abaqus Scripting User's Guide206

Using regions to read a subset of field output data

S : 0.00697 -0.05642 0.00892 -0.00108
Element label = 11 Integration Point = 1
S : 0.01281 -0.05660 0.00897 -0.00146
Element label = 11 Integration Point = 2
S : 0.01183 -0.05651 0.00897 -0.00257
Element label = 11 Integration Point = 3 ...

Possible values for the position argument to the getSubset command are:

• INTEGRATION_POINT

• NODAL

• ELEMENT_NODAL

• CENTROID

If the requested field values are not found in the output database at the specified ELEMENT_NODAL or CENTROID
positions, they are extrapolated from the field data at the INTEGRATION_POINT position.

207Abaqus Scripting User's Guide

Using regions to read a subset of field output data

Reading history output data

History output is output defined for a single point or for values calculated for a portion of the model as a whole, such
as energy. Depending on the type of output expected, the historyRegions repository contains data from one of the
following:

• a node

• an integration point

• a region

• a material point

Note: History data from an analysis cannot contain multiple points.

The history data object model is shown in Figure 1.

steps

frames

 = Container

 = Singular object

odb

rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions

point

historyOutputs

fieldOutputs

materials

Figure 1:The history data object model.

In contrast to field output, which is associated with a frame, history output is associated with a step. History output
data are stored in the historyRegions repository under an OdbStep object. Abaqus creates keys to the historyRegions
repository that describe the region; for example,

• 'Node PART-1-1.1000'

• 'Element PART-1-1.2 Int Point 1'

• 'Assembly ASSEMBLY'

The output from all history requests that relate to a specified point is collected in one HistoryRegion object. A
HistoryRegion object contains multiple HistoryOutput objects. Each HistoryOutput object, in turn, contains a sequence
of (frameValue, value) sequences. In a time domain analysis (domain=TIME) the sequence is a tuple of (stepTime,
value). In a frequency domain analysis (domain=FREQUENCY) the sequence is a tuple of (frequency, value). In a
modal domain analysis (domain=MODAL) the sequence is a tuple of (mode, value).

In the analysis that generated the Abaqus/CAE Visualization module tutorial output database, the user asked for the
following history output:

Abaqus Scripting User's Guide208

Reading history output data

At the rigid body reference point (Node 1000)

• U

• V

• A

At the corner element

• MISES

• LE22

• S22

The history output data can be retrieved from the HistoryRegion objects in the output database. The tutorial output
database contains HistoryRegion objects that relate to the rigid body reference point and the integration points of the
corner element as follows:

• 'Node PART-1-1.1000'

• 'Element PART-1-1.1 Int Point 1'

• 'Element PART-1-1.1 Int Point 2'

• 'Element PART-1-1.1 Int Point 3'

• 'Element PART-1-1.1 Int Point 4'

The following statements read the tutorial output database and write the U2 history data from the second step to an
ASCII file that can be plotted by Abaqus/CAE:

from odbAccess import *

odb = openOdb(path='viewer_tutorial.odb')
step2 = odb.steps['Step-2']
region = step2.historyRegions['Node PART-1-1.1000']
u2Data = region.historyOutputs['U2'].data
dispFile = open('disp.dat','w')
for time, u2Disp in u2Data:
 dispFile.write('%10.4E %10.4E\n' % (time, u2Disp))
dispFile.close()

The output in this example is a sequence of tuples containing the frame time and the displacement value. The example
uses nodal history data output. If the analysis requested history output from an element, the output database would
contain one HistoryRegion object and one HistoryPoint object for each integration point.

209Abaqus Scripting User's Guide

Reading history output data

An example of reading node and element information from an output database

The following script illustrates how you can open the output database used by the Abaqus/CAE Visualization module
tutorial output database and print out some nodal and element information. Use the following commands to retrieve
the example script and the tutorial output database:

abaqus fetch job=odbElementConnectivity
abaqus fetch job=viewer_tutorial

odbElementConnectivity.py
Script to extract node and element information.
#
Command line argument is the path to the output
database.
#
For each node of each part instance:
Print the node label and the nodal coordinates.
#
For each element of each part instance:
Print the element label, the element type, the
number of nodes, and the element connectivity.

from odbAccess import *
import sys

Check that an output database was specified.

if len(sys.argv) != 2:
 print('Error: you must supply the name \
 of an odb on the command line')
 sys.exit(1)

Get the command line argument.

odbPath = sys.argv[1]

Open the output database.

odb = openOdb(path=odbPath)

assembly = odb.rootAssembly

Model data output

print('Model data for ODB: ', odbPath)

For each instance in the assembly.

numNodes = numElements = 0

for name, instance in assembly.instances.items():

 n = len(instance.nodes)
 print('Number of nodes of instance %s: %d' % (name, n))
 numNodes = numNodes + n

 print()
 print('NODAL COORDINATES')

 # For each node of each part instance

Abaqus Scripting User's Guide210

An example of reading node and element information from an output database

 # print the node label and the nodal coordinates.
 # Three-dimensional parts include X-, Y-, and Z-coordinates.
 # Two-dimensional parts include X- and Y-coordinates.

 if instance.embeddedSpace == THREE_D:
 print(' X Y Z')
 for node in instance.nodes:
 print(node.coordinates)
 else:
 print(' X Y')
 for node in instance.nodes:
 print(node.coordinates)

 # For each element of each part instance
 # print the element label, the element type, the
 # number of nodes, and the element connectivity.

 n = len(instance.elements)
 print('Number of elements of instance ', name, ': ', n)
 numElements = numElements + n

 print('ELEMENT CONNECTIVITY')
 print(' Number Type Connectivity')
 for element in instance.elements:
 print('%5d %8s' % (element.label, element.type), end=' ')
 for nodeNum in element.connectivity:
 print('%4d' % nodeNum, end=' ')
 print()

print()
print('Number of instances: ', len(assembly.instances))
print('Total number of elements: ', numElements)
print('Total number of nodes: ', numNodes)

211Abaqus Scripting User's Guide

An example of reading node and element information from an output database

An example of reading field data from an output database

The following script combines many of the commands you have already seen and illustrates how you read model data
and field output data from the output database used by the Abaqus/CAE Visualization module tutorial. Use the following
commands to retrieve the example script and the tutorial output database:

abaqus fetch job=odbRead
abaqus fetch job=viewer_tutorial

odbRead.py
A script to read the Abaqus/CAE Visualization module tutorial
output database and read displacement data from the node at
the center of the hemispherical punch.

from odbAccess import *

odb = openOdb(path='viewer_tutorial.odb')

Create a variable that refers to the
last frame of the first step.

lastFrame = odb.steps['Step-1'].frames[-1]

Create a variable that refers to the displacement 'U'
in the last frame of the first step.

displacement = lastFrame.fieldOutputs['U']

Create a variable that refers to the node set 'PUNCH'
located at the center of the hemispherical punch.
The set is associated with the part instance 'PART-1-1'.

center = odb.rootAssembly.instances['PART-1-1'].\
 nodeSets['PUNCH']

Create a variable that refers to the displacement of the node
set in the last frame of the first step.

centerDisplacement = displacement.getSubset(region=center)

Finally, print some field output data from each node
in the node set (a single node in this example).

for v in centerDisplacement.values:
 print('Position = ', v.position,'Type = ',v.type)
 print('Node label = ', v.nodeLabel)
 print('X displacement = ', v.data[0])
 print('Y displacement = ', v.data[1])
 print('Displacement magnitude =', v.magnitude)

odb.close()

The resulting output is

Position = NODAL Type = VECTOR
Node label = 1000
X displacement = -8.29017850095e-34
Y displacement = -76.4554519653
Displacement magnitude = 76.4554519653

Abaqus Scripting User's Guide212

An example of reading field data from an output database

Writing to an output database

You can write your own data to an output database, and you can use Abaqus/CAE to view the data.
Writing to an output database is very similar to reading from an output database. When you open an existing
database, the Odb object contains all the objects found in the output database, such as instances, steps, and field
output data. In contrast, when you are writing to a new output database, these objects do not exist. As a result
you must use a constructor to create the objects. For example, you use the Part constructor to create a Part
object, the Instance constructor to create an OdbInstance object, and the Step constructor to create an OdbStep
object.

After you create an object, you use methods of the objects to enter or modify the data associated with the object.
For example, if you are creating an output database, you first create an Odb object. You then use the Part
constructor to create a part. After creating the part, you use the addNodes and addElements methods of the
Part object to add nodes and elements, respectively. Similarly, you use the addData method of the FieldOutput
object to add field output data to the output database. After creating an output database, you should use the save
method on the Odb object to save the output database.

The example script in Creating an output database also illustrates how you can write to an output database.

In this section:

• Creating a new output database

• Writing model data

• Writing results data

• Writing field output data

• Default display properties

• Writing history output data

213

Creating a new output database

You use the Odb constructor to create a new, empty Odb object.

odb = Odb(name='myData',
 analysisTitle='derived data',
 description='test problem',
 path='testWrite.odb')

For a full description of the Odb command, see Odb object. Abaqus creates the RootAssembly object when you create
or open an output database.

You use the save method to save the output database.

odb.save()

For a full description of the save command, see save().

Abaqus Scripting User's Guide214

Creating a new output database

Writing model data

To define the geometry of your model, you first create the parts that are used by the model and then you add nodes
and elements to the parts. You then define the assembly by creating instances of the parts. If the output database already
contains results data, you should not change the geometry of the model. This is to ensure that the results remain
synchronized with the model.

Part

If the part was created by Abaqus/CAE, the description of the native Abaqus/CAE geometry is stored in the
model database, but it is not stored in the output database. A part is stored in an output database as a collection
of nodes, elements, surfaces, and sets. You use the Part constructor to add a part to the Odb object. You can
specify the type of the part; however, only DEFORMABLE_BODY is currently supported. For example,

part1 = odb.Part(name='part-1',
 embeddedSpace=THREE_D, type=DEFORMABLE_BODY)

For a full description of the Part constructor, see OdbPart object. The new Part object is empty and does not
contain geometry. After you create the Part object, you add nodes and elements.

You use the addNodes method to add nodes by defining node labels and coordinates. You can also define an
optional node set. For example,

nodeData = ((1, 1,0,0), (2, 2,0,0),
 (3, 2,1,0.1), (4, 1,1,0.1),
 (5, 2,-1,-0.1), (6, 1,-1,-0.1),)
part1.addNodes(nodeData=nodeData, nodeSetName='nset-1')

For a full description of the addNodes command, see addNodes(...).

After you have created nodes, you can use the NodeSetFromNodeLabels constructor to create a node set from
the node labels. For more information, see NodeSetFromNodeLabels(...).

Similarly, you use the addElements method to add elements to the part using a sequence of element labels,
element connectivity, and element type. You can also define an optional element set and an optional section
category. For example,

Set up the section categories

sCat = odb.SectionCategory(name='S5',
 description='Five-Layered Shell')

spBot = sCat.SectionPoint(number=1,
 description='Bottom')
spMid = sCat.SectionPoint(number=3,
 description='Middle')
spTop = sCat.SectionPoint(number=5,
 description='Top')

elementData = ((1, 1,2,3,4),
 (2, 6,5,2,1),)
part1.addElements(elementData=elementData, type='S4',
 elementSetName='eset-1', sectionCategory=sCat)

For a full description of the addElements command, see addElements(...).

215

Writing model data

The RootAssembly object

The root assembly is created when you create the output database. You access the RootAssembly object using
the same syntax as that used for reading from an output database.

odb.rootAssembly

You can create both instances and regions on the RootAssembly object.

Part instances

You use the Instance constructor to create part instances of the parts you have already defined using the Part
constructor. For example,

a = odb.rootAssembly
instance1 = a.Instance(name='part-1-1', object=part1)

You can also supply an optional local coordinate system that specifies the rotation and translation of the part
instance. You can add nodes and elements only to a part; you cannot add elements and nodes to a part instance.
As a result, you should create the nodes and elements that define the geometry of a part before you instance the
part. For a full description of the Instance command, see OdbInstance object.

Regions

Region commands are used to create sets from element labels, node labels, and element faces. You can create a
set on a part, part instance, or the root assembly. Node and element labels are unique within an instance but not
within the assembly. As a result, a set on the root assembly requires the names of the part instances associated
with the nodes and elements. You can also use region commands to create surfaces. For example,

An element set on an instance
eLabels = [9,99]
elementSet = instance1.ElementSetFromElementLabels(
 name='elsetA',elementLabels=eLabels)
A node set on the rootAssembly
nodeLabels = (5,11)
instanceName = 'part-1-1'
nodeSet = assembly.NodeSetFromNodeLabels(
 name='nodesetRA',nodeLabels=((instanceName,nodeLabels),))

The region commands are described in Region commands.

Materials

You use the Material object to list material properties.

Materials are stored in the materials repository under the Odb object.

To create an isotropic elastic material, with a Young's modulus of 12000.0 and an effective Poisson's ratio of
0.3 in the output database:

 materialName = "Elastic Material"
 material_1 = odb.Material(name=materialName)
 material_1.Elastic(type=ISOTROPIC,table=((12000,0.3),))

For more information, see Material commands.

Sections

You use the Section object to create sections and profiles.

Abaqus Scripting User's Guide216

Writing model data

Sections are stored in the sections repository under the Odb object.

The following code creates a homogeneous solid section object. A Material object must be present before creating
a Section object. An exception is thrown if the material does not exist.

 sectionName = 'Homogeneous Solid Section'
 mySection = odb.HomogeneousSolidSection(
 name = sectionName,
 material = materialName,
 thickness = 2.0)

To create a circular beam profile object in the output database:

 profileName = "Circular Profile"
 radius = 10.00
 odb.CircularProfile(name = profileName, r = radius)

Section assignments

You use the SectionAssignment object to assign sections and their associated material properties to regions of
the model. SectionAssignment objects are members of the Odb object. For a full description of the assignSection
method, see assignSection(...).

All Elements in an Abaqus analysis need to be associated with section and material properties. Section assignments
provide the relationship between elements in an Instance object and their section properties. The section properties
include the associated material name. To create an element set and assign a section:

 elLabels = (1,2)
 elset = instance.ElementSetFromElementLabels(
 name=materialName, elementLabels=elLabels)
 instance.assignSection(region=elset,section=section)

217Abaqus Scripting User's Guide

Writing model data

Writing results data

To write results data to the output database, you first create the Step objects that correspond to each step of the analysis.
If you are writing field output data, you also create the Frame objects that will contain the field data. History output
data are associated with Step objects.

Steps

You use the Step constructor to create a results step for time, frequency, or modal domain results. For example,

step1 = odb.Step(name='step-1',
 description='', domain=TIME, timePeriod=1.0)

The Step constructor has an optional previousStepName argument that specifies the step after which this step
must be inserted in the steps repository. For a full description of the Step command, see Step(...).

Frames

You use the Frame constructor to create a frame for field output. For example,

frame1 = step1.Frame(incrementNumber=1,
 frameValue=0.1, description='')

For a full description of the Frame command, see Frame(...).

Abaqus Scripting User's Guide218

Writing results data

Writing field output data

A FieldOutput object contains a “cloud of data values” (e.g., stress tensors at each integration point for all elements).
Each data value has a location, type, and value. You add field output data to a Frame object by first creating a FieldOutput
object using the FieldOutput constructor and then adding data to the FieldOutput object using the addData method.
For example,

Create the part and the instance.

part1 = odb.Part(name='part-1',
 embeddedSpace=THREE_D, type=DEFORMABLE_BODY)
a = odb.rootAssembly
instance1 = a.Instance(name='part-1-1', object=part1)

Write nodal displacements

uField = frame1.FieldOutput(name='U',
 description='Displacements', type=VECTOR)

Create the node labels.

nodeLabelData = (1, 2, 3, 4, 5, 6)

Each set of data corresponds to a node label.

dispData = ((1,2,3),
 (4,5,6),
 (7,8,9),
 (10,11,12),
 (13, 14, 15),
 (16,17,18))

Add nodal data to the FieldOutput object using the
node labels and the nodal data for this part instance.

uField.addData(position=NODAL, instance=instance1,
 labels=nodeLabelData, data=dispData)

Make this the default deformed field for this step.

step1.setDefaultDeformedField(uField)

For a full description of the FieldOutput constructor, see FieldOutput(...).

The type argument to the FieldOutput constructor describes the type of the data—tensor, vector, or scalar. The properties
of the different tensor types are:

Full tensor

A tensor that has six components and three principal values. Full three-dimensional rotation of the tensor is
possible.

Three-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Full three-dimensional rotation of
the tensor components is possible.

219

Writing field output data

Three-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal values. Full
three-dimensional rotation of the tensor components is possible.

Two-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Only in-plane rotation of the tensor
components is possible.

Two-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal values. Only
in-plane rotation of the tensor components is possible.

The valid components and invariants for the different data types are given in Table 1.

Table 1: Valid components and invariants for Abaqus data types.

InvariantsComponentsData type

SCALAR

MAGNITUDE1, 2, 3VECTOR

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL

11, 22, 33, 12, 13, 23TENSOR_3D_FULL

MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

11, 22, 12TENSOR_3D_SURFACE

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,

11, 22, 33, 12TENSOR_3D_PLANAR

MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

11, 22, 12TENSOR_2D_SURFACE

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,

11, 22, 33, 12TENSOR_2D_PLANAR

MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

For example, the following statements add element data to the FieldOutput object:

Write stress tensors (output only available at
top/bottom section points)
The element defined above (S4) has 4 integration
points. Hence, there are 4 stress tensors per element.
Abaqus creates one layer of section points each
time the script calls the addData method.

elementLabelData = (1, 2)

topData = ((1.,2.,3.,4.), (1.,2.,3.,4.),
 (1.,2.,3.,4.), (1.,2.,3.,4.),
 (1.,2.,3.,4.), (1.,2.,3.,4.),

Abaqus Scripting User's Guide220

Writing field output data

 (1.,2.,3.,4.), (1.,2.,3.,4.),
)
bottomData = ((1.,2.,3.,4.), (1.,2.,3.,4.),
 (1.,2.,3.,4.), (1.,2.,3.,4.),
 (1.,2.,3.,4.), (1.,2.,3.,4.),
 (1.,2.,3.,4.), (1.,2.,3.,4.),
)

transform = ((1.,0.,0.), (0.,1.,0.), (0.,0.,1.))

sField = frame1.FieldOutput(name='S',
 description='Stress', type=TENSOR_3D_PLANAR,
 componentLabels=('S11', 'S22', 'S33',
 'S12'), validInvariants=(MISES,))
sField.addData(position=INTEGRATION_POINT,
 sectionPoint=spTop, instance=instance1,
 labels=elementLabelData, data=topData,
 localCoordSystem=transform)
sField.addData(position=INTEGRATION_POINT,
 sectionPoint=spBot, instance=instance1,
 labels=elementLabelData, data=bottomData,
 localCoordSystem=transform)

For this step, make this the default field for
visualization.

step1.setDefaultField(sField)

For a full description of the addData command, see addData(...).

As a convenience, localCoordSystem can be a single transform or a list of transforms. If localCoordSystem is a single
transform, it applies to all values. If localCoordSystem is a list of transforms, the number of items in the list must match
the number of data values.

221Abaqus Scripting User's Guide

Writing field output data

Default display properties

The previous examples show how you can use commands to set the default field variable and deformed field variable.
Abaqus/CAE uses the default field variable setting to determine the variable to display in a contour plot; for example,
stress. Similarly, the default deformed field variable determines the variable that distinguishes a deformed plot from
an undeformed plot. Typically, you will use displacement for the default deformed field variable; you cannot specify
an invariant or a component. The default variable settings apply for each frame in the step. For example, the following
statements use the deformation 'U' as the default setting for both field variable and deformed field variable settings
during a particular step:

field=odb.steps['impact'].frames[1].fieldOutputs['U']
odb.steps['impact'].setDefaultField(field)
odb.steps['impact'].setDefaultDeformedField(field)

You can set a different default field variable and deformed field variable for different steps. You will need to use a
loop to set the defaults for each step. For example,

for step in odb.steps.values():
 step.setDefaultField(field)

Abaqus Scripting User's Guide222

Default display properties

Writing history output data

History output is output defined for a single point or for values calculated for a portion of the model as a whole, such
as energy. Depending on the type of output expected, the historyRegions repository contains data from one of the
following:

• a node

• an element, or a location in an element

• a region

Note: History data from an analysis cannot contain multiple points.

The output from all history requests that relate to a specified point is collected in one HistoryRegion object. You use
the HistoryPoint constructor to create the point. For example,

point1 = HistoryPoint(element=instance1.elements[0])

For a full description of the HistoryPoint command, see HistoryPoint(...).

You then use the HistoryRegion constructor to create a HistoryRegion object:

step1 = odb.Step(name='step-1',
 description='', domain=TIME, timePeriod=1.0)
h1 = step1.HistoryRegion(name='my history',
 description='my stuff',point=point1)

For a full description of the HistoryRegion command, see HistoryRegion(...).

You use the HistoryOutput constructor to add variables to the HistoryRegion object.

h1_u1 = h1.HistoryOutput(name='U1',
 description='Displacement', type=SCALAR)
h1_rf1 = h1.HistoryOutput(name='RF1',
 description='Reaction Force', type=SCALAR)

Similarly for Step 2

step2 = odb.Step(name='step-2',
 description='', domain=TIME, timePeriod=1.0)
h2 = step2.HistoryRegion(name='my history',
 description='my stuff', point=point1)
h2_u1 = h2.HistoryOutput(name='U1',
 description='Displacement', type=SCALAR)
h2_rf1 = h2.HistoryOutput(name='RF1',
 description='Reaction Force', type=SCALAR)

Each HistoryOutput object contains a sequence of (frameValue, value) sequences. The HistoryOutput object has a
method (addData) for adding data. Each data item is a sequence of (frameValue, value). In a time domain analysis
(domain=TIME) the sequence is (stepTime, value). In a frequency domain analysis (domain=FREQUENCY) the
sequence is (frequency, value). In a modal domain analysis (domain=MODAL) the sequence is (mode, value).

You add the data values as time and data tuples. The number of data items must correspond to the number of time
items. For example,

timeData = (0.0, 0.1, 0.3, 1.0)
u1Data = (0.0, 0.0004, 0.0067, 0.0514)
rf1Data = (27.456, 32.555, 8.967, 41.222)

h1_u1.addData(frameValue=timeData, value=u1Data)

223

Writing history output data

h1_rf1.addData(frameValue=timeData, value=rf1Data)

similar for step2

timeData = (1.2, 1.9, 3.0, 4.0)
u1Data = (0.8, 0.9, 1.3, 1.5)
rf1Data = (0.9, 1.1, 1.3, 1.5)

h2_u1.addData(frameValue=timeData, value=u1Data)
h2_rf1.addData(frameValue=timeData, value=rf1Data)

Abaqus Scripting User's Guide224

Writing history output data

Exception handling in an output database

Python exception handling in the output database is identical to that in the model database.
Python exception handling is described in Exception handling.

The exceptions thrown are of type OdbError; for example, the following script catches exceptions thrown when the
python interface in not successful in opening an output database:

 invalidOdbName = "invalid.odb"
 try:
 myOdb = openOdb(invalidOdbName)
 except OdbError as e:
 print('Abaqus error message: %s' % str(e))
 print('customized error message here')
 except:
 print('Unknown Exception. ')

225

Exception handling in an output database

Computations with Abaqus results

This section discusses computations with Abaqus results in the Abaqus Scripting Interface.

In this section:

• Rules for the mathematical operations

• Valid mathematical operations

• Envelope calculations

• Transformation of results

Abaqus Scripting User's Guide226

Rules for the mathematical operations

Mathematical operations are supported for FieldOutput, FieldValue, and HistoryOutput objects. These operators allow
you to perform linear superposition of Abaqus results or to create more complex derived results from Abaqus results.

The following rules apply:

• The operations are performed on the components of a tensor or vector.

• The invariants are computed from the component values. For example, taking the absolute value of a tensor can
result in negative values of the pressure invariant.

• Operations between FieldOutput, FieldValue, and HistoryOutput objects are not supported.

• Multiplication and division are not supported between two vector objects nor between two tensor objects.

• The types in an expression must be compatible. For example,

- A vector cannot be added to a tensor.

- A three-dimensional surface tensor cannot be added to a three-dimensional planar tensor.

- INTEGRATION_POINT data cannot be added to ELEMENT_NODAL data.

• If the fields in the expression were obtained using the getSubset method, the same getSubset operations
must have been applied in the same order to obtain each field.

• Arguments to the trigonometric functions must be in radians.

• Operations on tensors are performed in the local coordinate system, if it is available. Otherwise the global system
is used. Abaqus assumes that the local coordinate systems are consistent for operations involving more than one
tensor.

• Operations between FieldValue objects associated with different locations in the model are allowed only if the data
types are the same. If the locations in the model differ, the FieldValue computed will not be associated with a
location. If the local coordinate systems of the FieldValue objects are not the same, the local coordinate systems
of both fieldValues will be disregarded and the fieldValue computed will have no local coordinate system.

The FieldOutput operations are significantly more efficient than the FieldValue operators. You can save the computed
FieldOutput objects with the following procedure (see the example, Computations with FieldOutput objects):

• Create a new FieldOutput object in the output database.

• Use the addData method to add the new computed field objects to the new FieldOutput object.

227

Rules for the mathematical operations

Valid mathematical operations

Table 1 describes the abbreviations that are used in mathematical operations.

Table 1: Abbreviations.

Allowable valuesAbbreviation

FieldOutput objects, FieldValue objects, HistoryVariable objects, or floating point numbersall

floating point numbersfloat

FieldOutput objectsFO

FieldValue objectsFV

HistoryOutput objectsHO

Table 2 shows the valid operations on FieldOutput objects.

Table 2: Valid operations.

Return valueOperationSymbol

alladditionall + float

FOFO + FO

FVFV + FV

HOHO + HO

allunary negation-all

allsubtractionall - float

FOFO - FO

FVFV - FV

FOmultiplicationFO * FO (only if FO is a scalar)

allall * float

FOdivisionFO / FO (only if FO is a scalar)

allall / float

allabsolute valueabs(all)

allarccosineacos(all)

allarcsineasin(all)

allarctangentatan(all)

allcosinecos(all)

allconvert degrees to radiansdegreeToRadian (all)

allnatural exponentexp(all)

allbase 10 exponentexp10(all)

allnatural logarithmlog(all)

allbase 10 logarithmlog10(all)

allraise to a powerfloat ** float

FOpower(FO, float)

Abaqus Scripting User's Guide228

Valid mathematical operations

Return valueOperationSymbol

FVpower(FV, float)

HOpower(HO, float)

allconvert radian to degreeradianToDegree (all)

allsinesin(all)

allsquare rootsqrt(all)

alltangenttan(all)

FOmagnitude of the complex field outputcomplexMagnitude(FO)

FOphase of the complex field outputcomplexPhase(FO)

FOreal part of the complex field outputcomplexReal(FO)

FOimaginary part of the complex field outputcomplexImag(FO)

229Abaqus Scripting User's Guide

Valid mathematical operations

Envelope calculations

You use envelope calculations to retrieve the extreme value for an output variable over a number of fields. Envelope
calculations are especially useful for retrieving the extreme values over a number of load cases.

The following operators consider a list of fields and perform the envelope calculation:

(env, lcIndex) = maxEnvelope([field1, field2, ...])
(env, lcIndex) = minEnvelope([field1, field2, ...])

(env, lcIndex) = maxEnvelope([field1, field2, ...],
 invariant)
(env, lcIndex) = minEnvelope([field1, field2, ...],
 invariant)

(env, lcIndex) = maxEnvelope([field1, field2, ...],
 componentLabel)
(env, lcIndex) = minEnvelope([field1, field2, ...],
 componentLabel)

The envelope commands return two FieldOutput objects.

• The first object contains the requested extreme values.

• The second object contains the indices of the fields for which the extreme values were found. The indices derive
from the order in which you supplied the fields to the command.

The optional invariant argument is a Symbolic Constant specifying the invariant to be used when comparing vectors
or tensors. The optional componentLabel argument is a odb_String specifying the component of the vector or tensor
to be used for selecting the extreme value.

The following rules apply to envelope calculations:

• Abaqus compares the values using scalar data. If you are looking for the extreme value of a vector or a tensor, you
must supply an invariant or a component label for the selection of the extreme value. For example, for vectors you
can supply the MAGNITUDE invariant and for tensors you can supply the MISES invariant.

• The fields being compared must be similar. For example,

- VECTOR and TENSOR_3D_FULL fields cannot appear in the same list.

- The output region of all the fields must be the same. All the fields must apply to the whole model, or all the
fields must apply to the same set.

Abaqus Scripting User's Guide230

Envelope calculations

Transformation of results

Transformations of vector and tensor fields are supported for rectangular, cylindrical, and spherical coordinate systems.
The coordinate systems can be fixed or model based. Model-based coordinate systems refer to nodes for position and
orientation. Abaqus uses the coordinates of the deformed state to determine a systems origin and orientation for
model-based coordinate systems. Transformations that use a model-based coordinate system can account for large
displacements of both the coordinate system and the structure.

The steps required to transform results are (see also the example Transformation of field results):

• Create the coordinate system.

• Retrieve the field from the database.

• Use the fieldOutput.getTransformedField method to obtain a new field with the results in the specified
coordinate system.

• For large displacement of the structure and coordinate system, you must also retrieve the displacement field at the
frame. You must compute this displacement field for the whole model to ensure that the required displacement
information is available.

The following rules apply to the transformation of results:

• Beams, truss, and axisymmetric shell element results will not be transformed.

• The component directions 1, 2, and 3 of the transformed results will correspond to the system directions X, Y, and

Z for rectangular coordinate systems; R, , and Z for cylindrical coordinate systems; and R, , and for spherical
coordinate systems.

Note:

Stress results for three-dimensional continuum elements transformed into a cylindrical system would have
the hoop stress in S22, which is consistent with the coordinate system axis but inconsistent with the stress
state for a three-dimensional axisymmetric elements having hoop stress in S33.

• When you are transforming a tensor, the location or integration point always takes into account the deformation.
The location of the coordinate system depends on the model, as follows:

- If the system is fixed, the coordinate system is fixed.

- If the system is model based, you must supply a displacement field that determines the instantaneous location
and orientation of the coordinate system.

• Abaqus will perform transformations of tensor results for shells, membranes, and planar elements as rotations of
results about the element normal at the element result location. The element normal is the normal computed for the
frame associated with the field by Abaqus, and you cannot redefine the normal. Abaqus defines the location of the
results location from the nodal locations. You specify optional arguments if you want to use the deformed nodal
locations to transform results. For rectangular, cylindrical, and spherical coordinate systems the second component
direction for the transformed results will be determined by one of the following:

- The Y-axis in a rectangular coordinate system.

- The -axis in a cylindrical coordinate system.

- The -axis in a spherical coordinate system.

- A user-specified datum axis projected onto the element plane.

If the coordinate system used for projection and the element normal have an angle less than the specified tolerance
(the default is 30°), Abaqus will use the next axis and generate a warning.

231

Transformation of results

Improving the efficiency of your scripts

If you are accessing large amounts of data from an output database, you should be aware of potential inefficiencies in
your script and techniques that will help to speed up your scripts.

To improve the efficiency of scripts that access an output database, you should create objects that will be used to hold
temporary variables that are accessed multiple times while the script is executing. For example, if the script accesses
the temporary variable while inside a loop that is executed many times, creating an object to hold the variable will
speed up your script significantly.

The following example examines the von Mises stress in each element during a particular frame of field output. If the
stress is greater than a certain maximum value, the script prints the strain components for the element.

stressField = frame.fieldOutputs['MISES']
strainField = frame.fieldOutputs['LE']
count = 0
for v in stressField.values:
 if v.mises > stressCap:
 if v.integrationPoint:
 print('Element label = ', v.elementLabel, \
 'Integration Point = ', v.integrationPoint)
 else:
 print('Element label = ', v.elementLabel)
 for component in strainField.values[count].data:
 print('%-10.5f' % component)
 print()
 count = count + 1

In this example every time the script accesses a strain component from strainField.value, Abaqus must reconstruct the
sequence of FieldValue objects. This reconstruction could result in a significant performance degradation, particularly
for a large model.

A slight change in the script greatly improves its performance, as shown in the following example:

stressField = frame.fieldOutputs['MISES']
strainFieldValues = frame.fieldOutputs['LE'].values
count = 0
for v in stressField.values:
 if v.mises > stressCap:
 if v.integrationPoint:
 print('Element label = ', v.elementLabel, \
 'Integration Point = ', v.integrationPoint)
 else:
 print('Element label = ', v.elementLabel)
 for component in strainFieldValues[count].data:
 print('%-10.5f' % component)
 print()
 count = count + 1

The second script replaces the statement strainField = frame.fieldOutputs['LE'] with the statement
strainFieldValues = frame.fieldOutputs['LE'].values. As a result, Abaqus does not need to
reconstruct the sequence of FieldValue objects each time the script accesses a strain component.

Similarly, if you expect to retrieve more than one frame from an output database, you should create a temporary variable
that holds the entire frame repository. You can then provide the logic to retrieve the desired frames from the repository
and avoid recreating the repository each time. For example, executing the following statements could be very slow:

for i in range(len(odb.steps[name].frames)-1):
 frame[i] = odb.steps[name].frames[i]

Abaqus Scripting User's Guide232

Improving the efficiency of your scripts

Creating a temporary variable to hold the frame repository provides the same functionality and speeds up the process:

frameRepository = odb.steps[name].frames
for i in range(len(frameRepository)-1):
 frame[i] = frameRepository[i]

Such a potential loss of performance will not be a problem when accessing a load case frame. Accessing a load case
frame does not result in the creation of a frame repository and, thus, does not suffer from a corresponding loss of
performance.

233Abaqus Scripting User's Guide

Improving the efficiency of your scripts

Example scripts that access data from an output database

The following examples illustrate how you use the output database commands to access data from an output
database.

In addition, the Abaqus Scripting Interface examples, Reading from an output database and Investigating the

skew sensitivity of shell elements illustrate how to read data from an output database.

In this section:

• Finding the maximum value of von Mises stress

• Creating an output database

• An Abaqus Scripting Interface version of FPERT

• Computations with FieldOutput objects

• Computations with FieldValue objects

• Computations with HistoryOutput objects

• Creating a new load combination from different load cases

• Stress range for multiple load cases

• Transformation of field results

• Viewing the analysis of a meshed beam cross-section

• Using infinite elements to compute and view the results of an acoustic far-field analysis

• An Abaqus Scripting Interface version of FELBOW

Abaqus Scripting User's Guide234

Finding the maximum value of von Mises stress

This example illustrates how you can iterate through an output database and search for the maximum value of von
Mises stress. The script opens the output database specified by the first argument on the command line and iterates
through the following:

• Each step.

• Each frame in each step.

• Each value of von Mises stress in each frame.

In addition, you can supply an optional assembly element set argument from the command line, in which case the
script searches only the element set for the maximum value of von Mises stress.

The following illustrates how you can run the example script from the system prompt. The script will search the element
set ALL ELEMENTS in the viewer tutorial output database for the maximum value of von Mises stress:

abaqus python odbMaxMises.py -odb viewer_tutorial.odb
 -elset “ ALL ELEMENTS”

Note:

If a command line argument is a String that contains spaces, some systems will interpret the String correctly
only if it is enclosed in double quotation marks. For example, “ ALL ELEMENTS”.

You can also run the example with only the -help parameter for a summary of the usage.

Use the following commands to retrieve the example script and the viewer tutorial output database:

abaqus fetch job=odbMaxMises.py
abaqus fetch job=viewer_tutorial

"""
odbMaxMises.py
Code to determine the location and value of the maximum
von-mises stress in an output database.
Usage: abaqus python odbMaxMises.py -odb odbName
 -elset(optional) elsetName
Requirements:
1. -odb : Name of the output database.
2. -elset : Name of the assembly level element set.
 Search will be done only for element belonging
 to this set. If this parameter is not provided,
 search will be performed over the entire model.
3. -help : Print usage
"""

#~~~
from odbAccess import *
from sys import argv,exit
#~~~

def rightTrim(input,suffix):
 if (input.find(suffix) == -1):
 input = input + suffix
 return input
#~~~

def getMaxMises(odbName,elsetName):
 """ Print max mises location and value given odbName
 and elset(optional)

235

Finding the maximum value of von Mises stress

 """
 elset = elemset = None
 region = "over the entire model"
 """ Open the output database """
 odb = openOdb(odbName)
 assembly = odb.rootAssembly

 """ Check to see if the element set exists
 in the assembly
 """
 if elsetName:
 try:
 elemset = assembly.elementSets[elsetName]
 region = " in the element set : " + elsetName;
 except KeyError:
 print('An assembly level elset named %s does' \
 'not exist in the output database %s' \
 % (elsetName, odbName))
 odb.close()
 exit(0)

 """ Initialize maximum values """
 maxMises = -0.1
 maxElem = 0
 maxStep = "_None_"
 maxFrame = -1
 Stress = 'S'
 isStressPresent = 0
 for step in odb.steps.values():
 print('Processing Step:', step.name)
 for frame in step.frames:
 allFields = frame.fieldOutputs
 if (Stress in allFields):
 isStressPresent = 1
 stressSet = allFields[Stress]
 if elemset:
 stressSet = stressSet.getSubset(
 region=elemset)
 for stressValue in stressSet.values:
 if (stressValue.mises > maxMises):
 maxMises = stressValue.mises
 maxElem = stressValue.elementLabel
 maxStep = step.name
 maxFrame = frame.incrementNumber
 if(isStressPresent):
 print('Maximum von Mises stress %s is %f in element %d'%(
 region, maxMises, maxElem))
 print('Location: frame # %d step: %s '%(maxFrame,maxStep))
 else:
 print('Stress output is not available in' \
 'the output database : %s\n' %(odb.name))

 """ Close the output database before exiting the program """
 odb.close()

#==
S T A R T

if __name__ == '__main__':

 odbName = None

Abaqus Scripting User's Guide236

Finding the maximum value of von Mises stress

 elsetName = None
 argList = argv
 argc = len(argList)
 i=0
 while (i < argc):
 if (argList[i][:2] == "-o"):
 i += 1
 name = argList[i]
 odbName = rightTrim(name,".odb")
 elif (argList[i][:2] == "-e"):
 i += 1
 elsetName = argList[i]
 elif (argList[i][:2] == "-h"):
 print(__doc__)
 exit(0)
 i += 1
 if not (odbName):
 print(' **ERROR** output database name is not provided')
 print(__doc__)
 exit(1)
 getMaxMises(odbName,elsetName)

237Abaqus Scripting User's Guide

Finding the maximum value of von Mises stress

Creating an output database

The following example illustrates how you can use the Abaqus Scripting Interface commands to do the following:

1. Create a new output database.

2. Add model data.

3. Add field data.

4. Add history data.

5. Read history data.

6. Save the output database.

Use the following command to retrieve the example script:

abaqus fetch job=odbWrite

"""odbWrite.py
 Script to create an output database and add model,
 field, and history data. The script also reads
 history data, performs an operation on the data, and writes
 the result back to the output database.
 usage: abaqus python odbWrite.py
"""
from odbAccess import *
from odbMaterial import *
from odbSection import *
from abaqusConstants import *

def createODB():

 # Create an ODB (which also creates the rootAssembly)
 odb = Odb(name='simpleModel',
 analysisTitle='ODB created with Python ODB API',
 description='example illustrating Python ODB API ',
 path='odbWritePython.odb')

 # create few materials
 materialName = "Elastic Material"
 material_1 = odb.Material(name=materialName)
 material_1.Elastic(type=ISOTROPIC,
 temperatureDependency=OFF, dependencies=0,
 noCompression=OFF, noTension=OFF,
 moduli=LONG_TERM, table=((12000,0.3),))

 # create few sections
 sectionName = 'Homogeneous Shell Section'
 section_1 = odb.HomogeneousShellSection(name=sectionName,
 material=materialName, thickness=2.0)
 # Model data:

 # Set up the section categories.
 sCat = odb.SectionCategory(name='S5',
 description='Five-Layered Shell')
 spBot = sCat.SectionPoint(number=1,
 description='Bottom')
 spMid = sCat.SectionPoint(number=3,
 description='Middle')
 spTop = sCat.SectionPoint(number=5,
 description='Top')

Abaqus Scripting User's Guide238

Creating an output database

 # Create a 2-element shell model,
 # 4 integration points, 5 section points.

 part1 = odb.Part(name='part-1', embeddedSpace=THREE_D,
 type=DEFORMABLE_BODY)
 nodeData = (
 (1, 1,0,0),
 (2, 2,0,0),
 (3, 2,1,0.1),
 (4, 1,1,0.1),
 (5, 2,-1,-0.1),
 (6, 1,-1,-0.1),
)
 part1.addNodes(nodeData=nodeData,
 nodeSetName='nset-1')

 elementData = (
 (1, 1,2,3,4),
 (2, 6,5,2,1),
)
 part1.addElements(elementData=elementData, type='S4',
 elementSetName='eset-1', sectionCategory=sCat)

 # Instance the part.
 instance1 = odb.rootAssembly.Instance(name='part-1-1',
 object=part1)
 # create instance level sets for section assignment
 elLabels = (1,2)
 elset_1 = odb.rootAssembly.instances['part-1-1'].\
 ElementSetFromElementLabels(name=materialName,
 elementLabels=elLabels)
 instance1.assignSection(region=elset_1,
 section=section_1)

 # Field data:

 # Create a step and a frame.

 step1 = odb.Step(name='step-1',
 description='first analysis step',
 domain=TIME, timePeriod=1.0)
 analysisTime=0.1
 frame1 = step1.Frame(incrementNumber=1,
 frameValue=analysisTime,
 description=\
 'results frame for time '+str(analysisTime))

 # Write nodal displacements.

 uField = frame1.FieldOutput(name='U',
 description='Displacements', type=VECTOR)

 nodeLabelData = (1, 2, 3, 4, 5, 6)
 dispData = (
 (1,2,3),
 (4,5,6),
 (7,8,9),
 (10,11,12),
 (13, 14, 15),

239Abaqus Scripting User's Guide

Creating an output database

 (16,17,18)
)

 uField.addData(position=NODAL, instance=instance1,
 labels=nodeLabelData,
 data=dispData)

 # Make this the default deformed field for visualization.

 step1.setDefaultDeformedField(uField)

 """ Write stress tensors
 (output only available at top/bottom section points)
 The element defined above (S4) has 4 integration points.
 Hence, there are 4 stress tensors per element.
 Each Field constructor refers to only one layer of section
 points.
 """

 elementLabelData = (1, 2)
 topData = (
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
)
 bottomData = (
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
 (1.,2.,3.,4.),
)

 transform = (
 (1.,0.,0.),
 (0.,1.,0.),
 (0.,0.,1.)
)

 sField = frame1.FieldOutput(name='S',
 description='Stress', type=TENSOR_3D_PLANAR,
 componentLabels=('S11', 'S22', 'S33','S12'),
 validInvariants=(MISES,))
 sField.addData(position=INTEGRATION_POINT,
 sectionPoint=spTop, instance=instance1,
 labels=elementLabelData, data=topData,
 localCoordSystem=transform)
 sField.addData(position=INTEGRATION_POINT,
 sectionPoint=spBot, instance=instance1,
 labels=elementLabelData, data=bottomData,
 localCoordSystem=transform)

 # For this step, make this the default field

Abaqus Scripting User's Guide240

Creating an output database

 # for visualization.

 step1.setDefaultField(sField)

 # History data:

 # Create a HistoryRegion for a specific point.

 hRegionStep1 = step1.HistoryRegion(name='historyNode0',
 description='Displacement and reaction force',
 point=instance1.nodes[0])

 # Create variables for this history output in step1.

 hOutputStep1U1 = hRegionStep1.HistoryOutput(name='U1',
 description='Displacement', type=SCALAR)
 hOutputStep1Rf1 = hRegionStep1.HistoryOutput(name='RF1',
 description='Reaction Force', type=SCALAR)

 # Add history data for step1.

 timeData1 = (0.0, 0.1, 0.3, 1.0)
 u1Data = (0.0, 0.1, 0.3, 0.5)
 rf1Data = (0.0, 0.1, 0.3, 0.5)

 hOutputStep1U1.addData(frameValue=timeData1,
 value=u1Data)
 hOutputStep1Rf1.addData(frameValue=timeData1,
 value=rf1Data)

 # Create another step for history data.
 step2 = odb.Step(name='step-2', description='',
 domain=TIME, timePeriod=1.0)
 hRegionStep2 = step2.HistoryRegion(
 name='historyNode0',
 description='Displacement and reaction force',
 point=instance1.nodes[0])
 hOutputStep2U1 = hRegionStep2.HistoryOutput(
 name='U1',
 description='Displacement',
 type=SCALAR)
 hOutputStep2Rf1 = hRegionStep2.HistoryOutput(
 name='RF1',
 description='Reaction Force',
 type=SCALAR)

 # Add history data for the second step.
 timeData2 = (1.2, 1.9, 3.0, 4.0)
 u1Data = (0.8, 0.9, 1.3, 1.5)
 rf1Data = (0.9, 1.1, 1.3, 1.5)

 hOutputStep2U1.addData(frameValue=timeData2,
 value=u1Data)
 hOutputStep2Rf1.addData(frameValue=timeData2,
 value=rf1Data)

 # Get XY Data from the two steps.
 u1FromStep1 = hRegionStep1.getSubset(variableName='U1')
 u1FromStep2 = hRegionStep2.getSubset(variableName='U1')

 # Square the history data.

241Abaqus Scripting User's Guide

Creating an output database

 u1SquaredFromStep1 = \
 power(u1FromStep1.historyOutputs['U1'], 2.0)
 u1SquaredFromStep2 = \
 power(u1FromStep2.historyOutputs['U1'], 2.0)

 # Add the squared displacement to the two steps.
 hOutputStep1sumU1 = hRegionStep1.HistoryOutput(
 name='squareU1',
 description='Square of displacements',
 type=SCALAR)
 hOutputStep1sumU1.addData(data=u1SquaredFromStep1.data)

 hOutputStep2sumU1 = hRegionStep2.HistoryOutput(
 name='squareU1',
 description='Square of displacements',
 type=SCALAR)
 hOutputStep2sumU1.addData(data=u1SquaredFromStep2.data)

 # Save the results in the output database.
 # Use the Visualization module of Abaqus/CAE to
 # view the contents of the output database.

 odb.save()
 odb.close()

if __name__ == "__main__":
 createODB()

Abaqus Scripting User's Guide242

Creating an output database

An Abaqus Scripting Interface version of FPERT

A Fortran program that reads the Abaqus results file and creates a deformed mesh from the original coordinate data
and eigenvectors is described in Creation of a perturbed mesh from original coordinate data and eigenvectors: FPERT.
This example illustrates an Abaqus Scripting Interface script that reads an output database and performs similar
calculations.

The command line arguments provide the following:

• odbName: The output database file name.

• modeList: A list of eigenmodes to use in the perturbation.

• weightList: The perturbation weighting factors.

• outNameUser: The output file name (optional).

Use the following command to retrieve the example script:

abaqus fetch job=odbPert

Abaqus Scripting Interface version of FPERT, a Fortran
program to create a perturbed mesh from original coordinate
data and eigenvectors. FPERT is described in the Abaqus Example
Problems Manual.

import sys
from odbAccess import *
from types import IntType

Get input from the user

odbName = input('Enter odb name (w/o .odb): ')
modes = eval(input('Enter mode shape(s): '))
if type(modes) is IntType:
 modes = (modes,)

odb = openOdb(odbName + '.odb')

Get the undeformed coordinates from the first
step and frame

step = odb.steps.values()[0]

try:
 coords = step.frames[0].fieldOutputs['COORD']
except:
 err = "The analysis must include a field output request \
 for variable COORD."
 print(err)
 sys.exit(1)

Perturb the nodal coordinates

factors = []
for mode in modes:
 try:
 frame = step.frames[mode]
 except IndexError:
 print('Input error: mode %s does not exist' % mode)
 sys.exit(1)
 factors.append(float(input(

243

An Abaqus Scripting Interface version of FPERT

 'Enter imperfection factor for mode %s: '% mode)))
 coords = coords + factors[-1] * frame.fieldOutputs['U']

Write new nodal coordinates to a file

outFile = open(odbName + '_perturbed.inp', 'w')
header = \
"""

** Node data for perturbed mesh.
** Input mesh from: %s
** Mode shapes used: %s
** Imperfection factors used: %s

"""
outFile.write(header % (odbName, modes, factors))
format = '%6i, %14.7e, %14.7e, %14.7e\n'
for value in coords.values:
 outFile.write(
 format % ((value.nodeLabel,) + tuple(value.data)))
outFile.write('** End of perturbed mesh node input file.')
outFile.close()

Abaqus Scripting User's Guide244

An Abaqus Scripting Interface version of FPERT

Computations with FieldOutput objects

This example illustrates how you can operate on FieldOutput objects and save the computed field to the output database.
The example script does the following:

• Retrieves two specified fields from the output database.

• Computes a new field by subtracting the fields that were retrieved.

• Creates a new Step object in the output database.

• Creates a new Frame object in the new step.

• Creates a new FieldOutput object in the new frame.

• Uses the addData method to add the computed field to the new FieldOutput object.

Use the following command to retrieve the example script:

abaqus fetch job=fieldOperation

The fetch command also retrieves an input file that you can use to generate the output database that is read by the
example script.

FieldOutput operators example problem
#
Script that does computations with fields and
saves the results computed to the output database
#

from odbAccess import *
odb = openOdb(path='fieldOperation.odb')

Get fields from output database.

field1 = odb.steps['LC1'].frames[1].fieldOutputs['U']
field2 = odb.steps['LC2'].frames[1].fieldOutputs['U']

Compute difference between fields.

deltaDisp = field2 - field1

Save new field.

newStep = odb.Step(name='user',
 description='user defined results', domain= TIME, timePeriod=0)
newFrame = newStep.Frame(incrementNumber=0, frameValue=0.0)
newField = newFrame.FieldOutput(name='U',
 description='delta displacements', type=VECTOR)
newField.addData(field=deltaDisp)

odb.save()

245

Computations with FieldOutput objects

Computations with FieldValue objects

This example illustrates how you can use the fieldValue operators to sum and average fieldValues in a region. The
example script does the following:

• Retrieves the stress field for a specified region during the last step and frame of the output database.

• Sums all the stress fieldValues and computes the average value.

• For each component of stress, print the sum and the average stress.

Use the following command to retrieve the example script:

abaqus fetch job=sumRegionFieldValue

The fetch command also retrieves an input file that you can use to generate the output database that is read by the
example script.

#
fieldValue operators example problem:
#
sum and average stress field values in a region
#

from odbAccess import *

#
get field
#

odb = openOdb(path='sumRegionFieldValue.odb')
endSet = odb.rootAssembly.elementSets['END1']
field = odb.steps.values()[-1].frames[-1].fieldOutputs['S']
subField = field.getSubset(region=endSet)

#
sum values
#

sum = 0
for val in subField.values:
 sum = sum + val
ave = sum / len(subField.values)

#
print results
#

print('Component Sum Average')
labels = field.componentLabels
for i in range(len(labels)):
 print('%s %5.3e %5.3e'% \
 (labels[i], sum.data[i], ave.data[i]))

Abaqus Scripting User's Guide246

Computations with FieldValue objects

Computations with HistoryOutput objects

This example illustrates how you can use the historyOutput operators to compute the displacement magnitude from
the components. The example script does the following:

• Retrieves the node of interest using a nodeSet.

• Uses the node of interest to construct a HistoryPoint object.

• Uses the HistoryPoint to retrieve the historyRegion.

• Computes the displacement magnitude history from the displacement component HistoryOutput objects in the
historyRegion.

• Scales the displacement magnitude history using a predefined value.

• Prints the displacement magnitude history.

Use the following command to retrieve the example script:

abaqus fetch job=compDispMagHist

The fetch command also retrieves an input file that you can use to generate the output database that is read by the
example script.

HistoryOutput operators example problem.
#
Compute magnitude of node displacement history from
displacement components and scale relative to given
allowable displacement.
#

from odbAccess import *

#
get historyRegion for the node in nodeSet TIP
#

odb = openOdb(path='compDispMagHist.odb')
endSet = odb.rootAssembly.instances['BEAM-1-1'].nodeSets['TIP']
histPoint = HistoryPoint(node=endSet.nodes[0])
tipHistories = odb.steps['Step-2'].getHistoryRegion(
 point=histPoint)

#
Compute and scale magnitude.
#

maxAllowableDisp = 5.0
sum = 0
componentLabels = ('U1', 'U2', 'U3')
for name in componentLabels:
 sum = sum + power(tipHistories.historyOutputs[name], 2.0)
sum = sqrt(sum) / maxAllowableDisp

#
Print magnitude.
#

print('History:', sum.name)
print('Time Magnitude')
for dataPair in sum.data:
 print("%5.4f %5.2f"%(dataPair[0], dataPair[1]))

247

Computations with HistoryOutput objects

Creating a new load combination from different load cases

This example illustrates how you can use the frame operators to create a new load combination from existing load
cases. The example script does the following:

• Retrieves the information describing the new load combination from the command line.

• Retrieves the frames for each load case.

• Computes the new stresses and displacements.

• Saves data computed to the output database as a new load combination.

The command line arguments provide the following:

• odbName: The output database file name.

• stepName: The name of the step containing the load cases.

• loadCaseNames: The load case names.

• scaling: The scale factors to apply to each load case.

Use the following command to retrieve the example script:

abaqus fetch job=createLoadComb

The fetch command also retrieves an input file that you can use to generate an output database that can be read by the
example script.

from odbAccess import *

retrieve request from user
odbName = input('Enter odb name')
stepName = input('Enter step name')

loadCaseNames = eval(input(\
 'Enter new load case as: \
 [\'loadCase1Name\', ..., \'loadCaseNName\']'))
if type(loadCaseNames) == tuple:
 loadCaseNames = list(loadCaseNames)
lcName = input('Enter new load case name')
scaling = eval(input(\
 'Enter new load case as:(scaleFactor1, .., scaleFactorN)'))

odb = openOdb(odbName)
step = odb.steps[stepName]

compute new load case
newStress = 0
newDisp = 0

for loadCaseName in loadCaseNames:
 frame = step.getFrame(loadCase=step.loadCases[loadCaseName])
 scaleFac = scaling[loadCaseNames.index(frame.loadCase.name)]
 newStress = newStress + scaleFac*frame.fieldOutputs['S']
 newDisp = newDisp + scaleFac*frame.fieldOutputs['U']

save new load case to odb
lcNew = step.LoadCase(name=lcName)
newFrame = step.Frame(loadCase=lcNew)
newFrame.FieldOutput(field=newStress, name='S')
newFrame.FieldOutput(name='U', field=newDisp)

Abaqus Scripting User's Guide248

Creating a new load combination from different load cases

odb.save()
odb.close()

249Abaqus Scripting User's Guide

Creating a new load combination from different load cases

Stress range for multiple load cases

This example illustrates how you can use the envelope operations to compute the stress range over a number of load
cases. The example script does the following:

• For each load case during a specified step, the script collects the S11 components of the stress tensor fields into a
list of scalar fields.

• Computes the maximum and minimum of the S11 stress component using the envelope calculations.

• Computes the stress range using the maximum and minimum values of the stress component.

• Creates a new frame in the step.

• Writes the computed stress range into a new FieldOutput object in the new frame.

Use the following command to retrieve the example script:

abaqus fetch job=stressRange

The fetch command also retrieves an input file that you can use to generate an output database that can be read by the
example script.

from odbAccess import *

retrieve request from user
odbName = input('Enter odb name')
stepName = input('Enter step name')

retrieve steps from the odb
odb=openOdb(odbName)
step = odb.steps[stepName]
sFields = []

for loadCase in step.loadCases.values():
 stressField = step.getFrame(loadCase=loadCase).\
 fieldOutputs['S']
 sFields.append(stressField.getScalarField(
 componentLabel='S11'))

compute stress range
maxStress, maxLoc = maxEnvelope(sFields)
minStress, minLoc = minEnvelope(sFields)

stressRange = maxStress - minStress

save to same step
newFrame = step.Frame(incrementNumber=0, frameValue=0.0,
 description='Stress Range')
newFrame.FieldOutput(field=stressRange, name='S11 Range')

odb.save()
odb.close()

Abaqus Scripting User's Guide250

Stress range for multiple load cases

Transformation of field results

This example illustrates how field results can be transformed to a different coordinate system. The example computes
deviation of the nodal displacements with respect to a perfectly cylindrical displacement (cylinder bore distortion).
The example does the following:

• Creates a cylindrical coordinate system.

• Transforms the results to the new coordinate system.

• Computes the average radial displacement.

• Computes the distortion as the difference between radial displacement and the average radial displacement.

• Saves the distortion field to the output database for viewing.

Use the following commands to retrieve the example script and an input file to create a sample output database:

abaqus fetch job=transformExa
abaqus fetch job=esf4sxdg

from odbAccess import *

Retrieve request from user.

odbName = input('Enter odb name')
stepName = input('Enter step name')
frameNo = int(input('Enter frame number'))

odb = openOdb(odbName)

Retrieve the displacements from last frame of the last step.

step = odb.steps[stepName]
frame = step.frames[frameNo]
displacement = frame.fieldOutputs['U']

Create cylindrical coordinate system and compute
associated results

coordSys = odb.rootAssembly.DatumCsysByThreePoints(name='cylC',
 coordSysType=CYLINDRICAL, origin=(0,0,0),
 point1=(1.0, 0.0, 0), point2=(0.0, 0.0, 1.0))

cylindricalDisp = displacement.getTransformedField(
 datumCsys=coordSys)
radialDisp = cylindricalDisp.getScalarField(componentLabel='U1')

Compute average radius.

sum = 0.0
for val in radialDisp.values:
 sum = sum + val.data
aveDisp = sum / len(radialDisp.values)

Compute distortion.

distortion = radialDisp - aveDisp

Save computed results to the database.

251

Transformation of field results

frame.FieldOutput(field=radialDisp)
fieldDescription = 'Distortion (\
 average radial displacement = ' + str(aveDisp) + ')'
frame.FieldOutput(name='Distortion',
 description=fieldDescription, field=distortion)

odb.save()
odb.close()

Abaqus Scripting User's Guide252

Transformation of field results

Viewing the analysis of a meshed beam cross-section

This example illustrates how you can view the results of a meshed beam cross-section analysis that was generated
using Timoshenko beams, as described in Meshed Beam Cross-Sections. Before you execute the example script, you
must run two analyses that create the following output database files:

• An output database generated by the two-dimensional cross-section analysis. The script reads cross-section data,
including the out-of-plane warping function, from this output database.

• An output database generated by the beam analysis. The script reads generalized section strains (SE) from this
output database.

Use the following command to retrieve the example script:

abaqus fetch job=compositeBeam

You must run the script from Abaqus/CAE by selecting File->Run Script from the main menu. The script uses
getInputs to display a dialog box that prompts you for the name of the output databases generated by the
two-dimensional cross-section analysis and by the beam analysis. The names are case-insensitive, and you can omit
the .odb file suffix. The files must be in the local directory. The dialog box also prompts you for the following:

• The name of the step

• The increment or mode number (for a frequency analysis)

• The name of the load case (if any)

• The name of the part instance

• The element number

• The integration point number

If you do not enter a value in a field, the script looks in the beam analysis output database for possible values. The
script then enters a default value in the dialog box and displays information about the range of possible values in the
Abaqus/CAE message area. You can leave the load case field blank if the analysis did not include load cases. The
script does not continue until all the values in the dialog box are acceptable. The same values are written to a file called
compositeBeam_values.dat in the local directory, and these values appear as defaults in the dialog box the
next time you run the example script.

After the getInputs method returns acceptable values, the script reads the two output databases and writes the
generated data back to the output database created by the two-dimensional cross-section analysis. If the beam
cross-section mesh consists of 1-DOF warping elements, the script then displays an undeformed contour plot of S11
and uses the getInputs method again to display a dialog box with a list of the available stress and strain components
(S11, S22, S33, E11, E22, and E33). If the beam cross-section mesh consists of 3-DOF warping elements, the deformed
contour plot is displayed, and the full three-dimensional stress and strain components (S11, S22, S33, S12, S13, S23,
E11, E22, E33, E12, E13, and E23) are available. The deformation represents the in-plane and out-of-plane warping.
Click OK in this dialog box to cycle through the available components. Click Cancel to end the script. You can also
select the component to display by starting the Visualization module and selecting Result->Field Output from the
main menu.

The example script writes new stress and strain fields. The script must provide a unique name for the generated field
output because each of these fields is generated for a specific beam analysis output database and for a specific part
instance, step, frame, element, and integration point. The script constructs this unique name as follows:

• All contour stress and strain fields for a specific beam analysis output database are written to a new frame, where
the description of the frame is the name of the output database. For example, for a beam analysis output database
called beam_run17.odb, the frame description is Beam ODB: beam_run17.

253

Viewing the analysis of a meshed beam cross-section

• The field name is assembled from a concatenation of the step name, frame index, instance name, element, and
integration point, followed by E or S. For example, Step-1_4_LINEARMESHED_12_1_E. Any spaces in a step
or instance name are replaced by underscores.

You can run the script many times; for example, to create contour data for a particular step, increment, and integration
point along each element of the beam. In this case you would also use Result->Field Output to select which element
to display.

The contour data generated by the example script are written back to the output database that was originally created
by the two-dimensional, cross-section analysis. If you want to preserve this database in its original form, you must
save a copy before you run the example script.

Abaqus Scripting User's Guide254

Viewing the analysis of a meshed beam cross-section

Using infinite elements to compute and view the results of an acoustic far-field analysis

This example illustrates how you can use the Abaqus Scripting Interface to compute acoustic far-field pressure values
from infinite element sets and project the results onto a spherical surface for visualization purposes.
This script is designed primarily to compute the acoustic far-field pressure using a layer of infinite acoustic elements
that forms a full or partial spherical surface. The script extends the acoustic analysis functionality within
Abaqus/Standard. The script writes the acoustic far-field pressure values to an output database, and you can use
Abaqus/CAE to view the far-field results.

The far-field pressure is defined as

where is the acoustic pressure at a distance from the reference point, is the wave number, and is the
acoustic far-field pressure. The acoustic pressure decibel value is defined as

where is the magnitude of the acoustic pressure at a point, is the root mean square acoustic pressure, and

 is the decibel reference value given as user input. The far-field pressure decibel value is defined in the same

manner as , using the same reference value ().

Note: If (in SI units), corresponds to

The script also calculates the far-field acoustic intensity, which is defined as

where is the far-field rms pressure, is the fluid density, and c is the speed of sound in the medium.

Before you execute the script, you must run a direct-solution, steady-state dynamics acoustics analysis that includes
three-dimensional acoustic infinite elements (ACIN3D3, ACIN3D4, ACIN3D6, and ACIN3D8). In addition, the output
database must contain results for the following output variables:

• INFN, the acoustic infinite element normal vector.

• INFR, the acoustic infinite element “radius,” used in the coordinate map for these elements.

• PINF, the acoustic infinite element pressure coefficients.

Use the following command to retrieve the script:

abaqus fetch job=acousticVisualization

Enter the Visualization module, and display the output database in the current viewport. Run the script by selecting
File->Run Script from the main menu bar.

The script uses getInputs to display a dialog box that prompts you for the following information:

• The name of the element set containing the infinite elements (the name is case sensitive). By default, the script
locates all the infinite elements in the model and uses them to create the spherical surface. If the script cannot find
the specified element set in the output database, it displays a list of the available element sets in the message area.

255

Using infinite elements to compute and view the results of an acoustic far-field analysis

• The radius of the sphere (required). The script asks you to enter a new value if the sphere with this radius does not
intersect any of the selected infinite elements.

• The coordinates of the center of the sphere. By default, the script uses (0,0,0).

• The analysis steps. You can enter one of the following:

- An Int

- A comma-separated list of Ints

- A range; for example, 1:20

You can also enter a combination of Ints and ranges; for example, 4,5,10:20,30. By default, the script reads
data from all the steps. The script ignores any steps that do not perform a direct-solution, steady-state dynamics
acoustics analysis or that have no results.

• The frequencies for which output should be generated (Hz). You can enter a Float, a list of Floats, or a range. By
default, the script generates output for all the frequencies in the original output database.

• A decibel reference value (required).

• The name of the part instance to create (required). The script appends this name to the name of the instance containing
the infinite elements being used.

• The speed of sound (required).

• The fluid density (required)

• Whether to write data to the original output database. By default, the script writes to an output database called

current-odb-name_acvis.odb.

After the getInputs method returns acceptable values, the script processes the elements in the specified element
sets. The visualization sphere is then determined using the specified radius and center. For each element in the infinite
element sets, the script creates a corresponding membrane element such that the new element is a projection of the old
element onto the surface of the sphere. The projection uses the infinite element reference point and the internally
calculated infinite direction normal (INFN) at each node of the element.

Once the new display elements have been created, the script writes results at the nodes in the set. The following output
results are written back to the output database:

• POR, the acoustic pressure.

• PORdB, the acoustic pressure decibel value. If the reference value used is 2 × 10−5 Pa, the PFARdB corresponds
to dB SPL.

• PFAR, the acoustic far-field pressure.

• PFARdB, the far-field pressure decibel value.

• INTEN_FAR, the far-field acoustic intensity.

To create the output at each node, the script first determines the point at which the node ray intersects the sphere. Using
the distance from the reference point to the intersection point and the element shape functions, the required output
variables are calculated at the intersection point.

After the script has finished writing data, it opens the output database containing the new data. For comparison, the
original instance is displayed along with the new instance, but results are available only for the new instance. However,
if you chose to write the results back to the original output database, the original instance and the new instance along
with the original results and the new results can be displayed side-by-side. The script displays any error, warning, or
information messages in the message area.

You can run the script more than once and continue writing data to the same output database. For example, you can
run the script several times to look at the far-field pressures at various points in space, and results on several spheres
will be written to the output database.

Abaqus Scripting User's Guide256

Using infinite elements to compute and view the results of an acoustic far-field analysis

To see how the script operates on a single triangular-element model, use the following command to retrieve the input
file:

abaqus fetch job=singleTriangularElementModel

Use the following command to create the corresponding output database:

abaqus job=singleTriangularElementModel

The results from running the script twice using the single triangular-element model, changing the radius of the sphere,
and writing the data back to the original output database are shown in Figure 1.

POR

+1.523e−04
+2.229e−04
+2.935e−04
+3.642e−04
+4.348e−04
+5.055e−04
+5.761e−04
+6.468e−04
+7.174e−04
+7.881e−04
+8.587e−04
+9.294e−04
+1.000e−03

Figure 1: Displaying the acoustic pressure on several spheres.

This model simulates the response of a sphere in “breathing” mode (a uniform radial expansion/compression mode).
The model consists of one triangular ACIN3D3 element. Each node of the element is placed on a coordinate axis at a
distance of 1.0 from the origin that serves as the reference point for the infinite element. The acoustic material properties
do not have physical significance; the values used are for convenience only. The loading consists of applying an
in-phase pressure boundary condition to all the nodes. Under this loading and geometry, the model behaves as a spherical

source (an acoustic monopole) radiating in the radial direction only. The acoustic pressure, , and the acoustic far-field

pressure, , at a distance from the center of the sphere are

and

where is the known acoustic pressure at some reference distance and is the wave number.

For this single-element example, you should enter a value of 1.0 for the speed of sound; thus, , where is

the frequency in Hz. in this model is 1, and is 0.001. The equations for the acoustic pressure, , and the acoustic

far-field pressure, , reduce to

and

257Abaqus Scripting User's Guide

Using infinite elements to compute and view the results of an acoustic far-field analysis

An Abaqus Scripting Interface version of FELBOW

This example illustrates the use of an Abaqus Scripting Interface script to read selected element integration point
records from an output database and to postprocess the elbow element results. The script creates X–Y data that can be
plotted with the X–Y plotting capability in Abaqus/CAE. The script performs the same function as the Fortran program
described in Creation of a data file to facilitate the postprocessing of elbow element results: FELBOW.

The script reads integration point data for elbow elements from an output database to visualize one of the following:

1. Variation of an output variable around the circumference of a given elbow element, or

2. Ovalization of a given elbow element.

The script creates either an ASCII file containing X–Y data or a new output database file that can be viewed using
Abaqus/CAE.

To use option 2, you must ensure that the integration point coordinates (COORD) are written to the output database.
For option 1 the X-data are data for the distance around the circumference of the elbow element, measured along the
middle surface, and the Y-data are data for the output variable. For option 2 the X–Y data are the current coordinates
of the middle-surface integration points around the circumference of the elbow element, projected to a local coordinate
system in the plane of the deformed cross-section. The origin of the local system coincides with the center of the
cross-section; the plane of the deformed cross-section is defined as the plane that contains the center of the cross-section.

You should specify the name of the output database during program execution. The script prompts for more information,
depending on the option that was chosen; this information includes the following:

• Your choice for storing results (ASCII file or a new output database)

• File name based on the above choice

• The postprocessing option (1 or 2)

• The part name

• The step name

• The frame number

• The element output variable (option 1 only)

• The component of the variable (option 1 only)

• The section point number (option 1 only)

• The element number or element set name

Before executing the script, run an analysis that creates an output database file containing the appropriate output. This
analysis includes, for example, output for the elements and the integration point coordinates of the elements. Execute
the script using the following command:

abaqus python felbow.py <filename.odb>

The script prompts for other information, such as the desired postprocessing option, part name, etc. The script processes
the data and produces a text file or a new output database that contains the information required to visualize the elbow
element results.

Elastic-plastic collapse of a thin-walled elbow under in-plane bending and internal pressure contains several figures
that can be created with the aid of this program.

Abaqus Scripting User's Guide258

An Abaqus Scripting Interface version of FELBOW

Using C++ to access an output database

The following sections describe the architecture of an output database and how to use the Abaqus C++ Application
Programming Interface (API) to access data from an output database.

In this section:

• About the C++ interface

• What do you need to access the output database?

• Abaqus Scripting Interface documentation style

• How the object model for the output database relates to commands

• Object model for the output database

• Compiling and linking your C++ source code

• Accessing the C++ interface from an existing application

• The Abaqus C++ API architecture

• Utility interface

• Reading from an output database

• Writing to an output database

• Exception handling in an output database

• Computations with Abaqus results

• Improving the efficiency of your scripts

• Example programs that access data from an output database

259

About the C++ interface

The C++ interface to an output database is related closely to the Abaqus Scripting Interface. Disparities between the
two interfaces are due to fundamental differences in the programming languages. The C++ interface is intended for
users with high-performance requirements; others are encouraged to use the Abaqus Scripting Interface.

A working knowledge of the C++ programming language is assumed.

Abaqus Scripting User's Guide260

About the C++ interface

What do you need to access the output database?

To use the Abaqus C++ API to access an output database, you need to understand the following:

• The fundamentals of Abaqus output data and the Abaqus concepts of instances, fields, and history.

• How to program in C++.

• How to use the C++ API utility interface.

• How to use Abaqus objects.

• How to compile and link your C++ source code.

261

What do you need to access the output database?

Abaqus Scripting Interface documentation style

This section describes the style that is used to describe a command in the Abaqus Scripting Reference Guide.
You may want to refer to the Abaqus Scripting Reference Guide while you read this section and compare the
style of a documented command with the descriptions provided here.

In this section:

• How the commands are ordered

• Access

• Path

• Prototype

• Return value

Abaqus Scripting User's Guide262

How the commands are ordered

The following list describes the order in which commands are documented in the Abaqus Scripting Reference Guide:

• Chapters are grouped alphabetically by functionality. In general, the functionality corresponds to the modules and
toolsets that are found in Abaqus/CAE; for example, Amplitude commandsAnimation commands, and Assembly

commands.

• Within each chapter the primary objects appear first and are followed by other objects in alphabetical order. For
example, in Mesh commands the objects are listed in the following order:

- Assembly

- Part

- ElemType

- MeshEdge

- MeshElement

- MeshFace

- MeshNode

- MeshStats

• Within each object description, the commands are listed in the following order:

- Constructors (in alphabetical order)

- Methods (in alphabetical order)

- Members

• Some methods are not associated with an object and appear at the end of a chapter; for example, the
evaluateMaterial() method appears at the end of Material commands.

263

How the commands are ordered

Access

The description of each object in the Abaqus Scripting Reference Guide begins with a section that describes how you
access an instance of the object.

The following is the access description for the Part object:

odb.parts()[name]

The access description specifies where instances of the object are located in the data model. The Part object can
accordingly be accessed as:

odb_PartContainer partCon = odb.parts();
odb_Part part = partCon["PART-1-1"];

The Access description for the FieldOutput object is

odb.steps()[name].frames(i).fieldOutputs()[name]

The following statements show how you use the object described by this Access description:

odb_StepContainer stepCon = odb.steps();
odb_Step step = stepCon["Side load"];
odb_SequenceFrame frameSeq = step.frames();
odb_Frame lastFrame = frameSeq.get(frameSeq.size() -1);
odb_FieldOutputContainer fieldCon = lastFrame.fieldOutputs();
odb_FieldOutput field= fieldCon["S"];

odb_FieldOutput iPointFieldData = field.getSubset(
 odb_Enum::INTEGRATION_POINT);

odb_SequenceInvariant myInvariants = field.validInvariants();

• The next to last line shows the getSubset method of the FieldOutput object.

• The last line shows the validInvariants member of the FieldOutput object.

Abaqus Scripting User's Guide264

Access

Path

A method that creates an object is called a “constructor.” The Abaqus C++ API uses the convention that constructors
begin with an uppercase character. In contrast, methods that operate on an object begin with a lowercase character.
The description of each constructor in the Abaqus Scripting Reference Guide includes a path to the command. For
example, the following describes the path to the Part constructor:

odb.Part

Some constructors include more than one path. For example, you can create a nodeSet that is associated with either a
Part object or the RootAssembly object, and each path is listed.

odb.parts()[name].NodeSet
odb.rootAssembly().NodeSet

The path is not listed if the method is not a constructor.

If you are using the Abaqus C++ API to read data from an output database, the objects exist when you open the output
database, and you do not have to use constructors to create them. However, if you are creating or writing to an output
database, you may need to use constructors to create new objects, such as part instances and steps. The documentation
describes the path to the constructors that create objects in an output database.

For example, the Path description for the FieldOutput constructor is

odb.steps()[name].frames(i).FieldOutput

The following statement creates a FieldOutput object:

odb_StepContainer stepCon = odb.steps();
odb_Step step = stepCon["Side load"];
odb_SequenceFrame frameSeq = step.frames();
odb_Frame frame = frameSeq.Get(frameSeq.Size() -1);
odb_FieldOutput& myFieldOutput = frame.FieldOutput("S",
 "stress", odb_Enum::TENSOR_3D_FULL);

265

Path

Prototype

Odb commands contains a prototype section for each C++ command. The prototype provides the type returned by the
command, the name of the command, and a list of all its arguments along with the type of each argument. Required
arguments appear first in the list followed by default arguments along with their default value. For example, the Frame
constructor is given as

odb_Frame Frame(int incrementNumber, float frameValue,
 const odb_String& description="");

indicating that the incrementNumber and frameValue arguments are required, that the optional description argument
has a default value of the empty string, and that the method returns a reference to the Frame object created.

Abaqus Scripting User's Guide266

Prototype

Return value

All commands return a value. Many commands return the value void. Constructors (methods that create an object)
always return the object being created. The return value of a command can be assigned to a variable. For example, in
the following statement the Odb constructor returns an Odb object, and the variable newOdb refers to this new object.

odb_Odb newOdb& = Odb("new", "", "", fileName);

You can use the object returned by a command in subsequent statements. The following statement uses the output
database created by the previous statement:

odb_Part& part = newOdb.Part("PART-1-1",
 odb_Enum::THREE_D, odb_Enum::DEFORMABLE_BODY);

If an exception is raised while a statement is executing, the command does not return a value.

267

Return value

How the object model for the output database relates to commands

You need to understand the object model for the output database both to read data from it and to write data to it. An
object model describes the relationship between objects. The object model for the Abaqus/CAE model is described in
The Abaqus object model.

For example, consider the object model for field output data shown in Figure 1. The Odb object at the top of the figure
is created when you issue the command to open or create an output database. As you move down the object model, an
OdbStep object is a member of the Odb object; similarly, a Frame object is a member of the OdbStep object. The
FieldOutput object has two members—fieldValue and fieldLocation.

steps

 = Container

 = Singular object

odb

rootAssembly

parts

sections

Model Data

frames

historyRegions

Results Data

point

historyOutputs

fieldOutputs

materials

Figure 1:The output database object model.

The object model translates directly to the structure of an Abaqus C++ API command. For example, the following
command refers to a Frame object in the sequence of frames contained in an OdbStep object:

odb.steps()["10 hz"].frames(3);

Similarly, the following command refers to the sequence of field data contained in a FieldOutput object.

odb.steps()["10 hz"].frames.get(3).
 fieldOutputs()["U"].values(47);

You use commands to access objects by stepping through the hierarchy of objects in the object model. The Access,
Path, and Prototype descriptions in Odb commands describe the interface definition of the command. The interface
definition of the command reflects the hierarchy of objects in the object model.

Abaqus Scripting User's Guide268

How the object model for the output database relates to commands

Object model for the output database

An output database generated from an Abaqus analysis contains both model and results data.
The output database object model is shown in Figure 1.

Model data

Model data describe the parts and part instances that make up the root assembly; for example, nodal
coordinates, set definitions, and element types.

Results data

Results data describe the results of your analysis; for example, stresses, strains, and displacements. You
use output requests to configure the contents of the results data. Results data can be either field output
data or history output data.

Note: For a description of object models, see About the Abaqus object model.

You can find more information on the format of the output database in Output to the Output Database.

In this section:

• Model data

• Results data

269

Model data

Model data define the model used in the analysis; for example, the parts, materials, initial and boundary conditions,
and physical constants. More information about model data can be found in The Abaqus object model and Assembly

Definition.

Abaqus does not write all the model data to the output database; for example, you cannot access loads, and only certain
interactions are available. Model data that are stored in the output database include parts, the root assembly, part
instances, regions, materials, sections, section assignments, and section categories, each of which is stored as an Abaqus
C++ API object. These components of model data are described below.

Parts

A part in the output database is a finite element idealization of an object. Parts are the building blocks of an
assembly and can be either rigid or deformable. Parts are reusable; they can be instanced multiple times in the
assembly. Parts are not analyzed directly; a part is like a blueprint for its instances. A part is stored in an output
database as a collection of nodes, elements, surfaces, and sets.

The root assembly

The root assembly is a collection of positioned part instances. An analysis is conducted by defining boundary
conditions, constraints, interactions, and a loading history for the root assembly. The output database object
model contains only one root assembly.

Part instances

A part instance is a usage of a part within the assembly. All characteristics (such as mesh and section definitions)
defined for a part become characteristics for each instance of that part—they are inherited by the part instances.
Each part instance is positioned independently within the root assembly.

Materials

Materials contain material models comprised of one or more material property definitions. The same material
models may be used repeatedly within a model; each component that uses the same material model shares
identical material properties. Many materials may exist within a model database, but only the materials that are
used in the assembly are copied to the output database.

Sections

Sections add the properties that are necessary to define completely the geometric and material properties of an
element. Various element types require different section types to complete their definitions. For example, shell
elements in a composite part require a section that provides a thickness, multiple material models, and an
orientation for each material model; all these pieces combine to complete the composite shell element definition.
Like materials, only those sections that are used in the assembly are copied to the output database.

Section assignments

Section assignments link section definitions to the regions of part instances. Section assignments in the output
database maintain this association. Sections are assigned to each part in a model, and the section assignments
are propagated to each instance of that part.

Abaqus Scripting User's Guide270

Model data

Section categories

You use section categories to group the regions of the model that use the same section definitions; for example,
the regions that use a shell section with five section points. Within a section category, you use the section points
to identify the location of results; for example, you can associate section point 1 with the top surface of a shell
and section point 5 with the bottom surface.

Analytical rigid surface

Analytical rigid surfaces are geometric surfaces with profiles that can be described with straight and curved line
segments. Using analytical rigid surfaces offers important advantages in contact modeling.

Rigid bodies

You use rigid bodies to define a collection of nodes, elements, and/or surfaces whose motion is governed by the
motion of a single node, called the rigid body reference node.

Pretension Sections

Pretension sections are used to associate a pre-tension node with a pre-tension section. The pre-tension section
can be defined using a surface for continuum elements or using an element for truss or beam elements.

Interactions

Interactions are used to define contact between surfaces in an analysis. Only contact interactions defined using
contact pairs are written to the output database.

Interaction properties

Interaction properties define the physical behavior of surfaces involved in an interaction. Only tangential friction
behavior is written to the output database.

Figure 1 shows the model data object model.

271Abaqus Scripting User's Guide

Model data

steps

 = Container

 = Singular object

odb

nodeSets

elementSets

surfaces

instances

nodeSets

elementSets

surfaces

elements

nodes

rootAssembly

parts

sectionCategories

description

Model Data

Results Data

HistoryRegion

fieldOutputs

point

historyOutputs

materials

name

Step

frames

historyRegions

Frame

Figure 1:The model data object model.

Abaqus Scripting User's Guide272

Model data

Results data

Results data describe the results of your analysis. Abaqus organizes the analysis results in an output database into the
following components:

Steps

An Abaqus analysis contains a sequence of one or more analysis steps. Each step is associated with an analysis
procedure.

Frames

Each step contains a sequence of frames, where each increment of the analysis that resulted in output to the
output database is called a frame. In a frequency or buckling analysis each eigenmode is stored as a separate
frame. Similarly, in a steady-state harmonic response analysis each frequency is stored as a separate frame.

Field output

Field output is intended for infrequent requests for a large portion of the model and can be used to generate
contour plots, animations, symbol plots, and displaced shape plots in the Visualization module of Abaqus/CAE.
You can also use field output to generate an X–Y data plot. Only complete sets of basic variables (for example,
all the stress or strain components) can be requested as field output. Field output is composed of a “cloud of data
values” (e.g., stress tensors at each integration point for all elements). Each data value has a location, type, and
value. You use the regions defined in the model data, such as an element set, to access subsets of the field output
data. Figure 1 shows the field output data object model within an output database.

steps

historyRegions

 = Container

 = Singular object

odb

rootAssembly

parts

sections

Model Data

Results Data

frames

fieldValues

fieldOutputs

materials

Figure 1:The field output data object model.

History output

History output is output defined for a single point or for values calculated for a portion of the model as a whole,
such as energy. History output is intended for relatively frequent output requests for small portions of the model
and can be displayed in the form of X–Y data plots in the Visualization module of Abaqus/CAE. Individual
variables (such as a particular stress component) can be requested.

Depending on the type of output expected, a HistoryRegion object can be defined for one of the following:

• a node

• an integration point

• a region

273

Results data

• the whole model

The output from all history requests that relate to a particular point or region is then collected in one HistoryRegion
object. Figure 2 shows the history output data object model within an output database.

steps

frames

 = Container

 = Singular object

odb

rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions

point

historyOutputs

fieldOutputs

materials

Figure 2:The history output data.

Abaqus Scripting User's Guide274

Results data

Compiling and linking your C++ source code

Sample postprocessing programs to perform commonly exercised tasks are presented in separate sections in this chapter.
These and other C++ postprocessing programs must be compiled and linked using the make parameter when running
the Abaqus execution procedure (see Making User-Defined Executables and Subroutines). To link properly, the
programs cannot contain a C++ main routine. Instead, the programs must begin with a C++ function called ABQmain.

#include <odb_API.h>

int ABQmain(int argc, char **argv)
{
 //Insert user code here
 return 0
 }

The arguments passed into the program upon execution will be passed into ABQmain as though it were the standard
C++ main function. The compile and link commands used by the abaqus make utility are determined by the settings
of the compile_cpp and link parameters in the Abaqus environment file.

275

Compiling and linking your C++ source code

Accessing the C++ interface from an existing application

This section provides information that may be helpful to users who need to access results in an output database
from an existing application.
Most users should find that the abaqus make utility is sufficient for their postprocessing needs. Since linking
and executing with dynamically linked runtime libraries is highly system dependent, the information in this
section is intended for users who have an advanced working knowledge of compilation and linking with runtime
libraries.

It is important to ensure that the compiler used to compile and link the existing application is consistent with
the compilers used to generate the Abaqus release. The “System Requirements” document lists the name and
version of the compiler used for the Abaqus release on each supported platform. You can access this document
through the System Information section of the Support page at www.3ds.com/simulia. You can also find
information on compiling and linking with the C++ interface to an output database in the Dassault Systèmes
Knowledge Base at http://support.3ds.com/knowledge-base/.

In this section:

• Initializing the C++ interface

• Link library location

• Runtime library location

• Header file location

Abaqus Scripting User's Guide276

Initializing the C++ interface

Before any calls are made to the C++ interface, the following call must be made to initialize the interface:

odb_initializeAPI();

This call is generated automatically when the abaqus make utility is run but must be included in any application that
is not compiled and linked using the abaqus make utility. After all calls to the C++ interface have been completed,
the interface may be deactivated by including a call to

odb_finalizeAPI();

If the finalization call is not made explicitly, the finalize routine will be called automatically when the application
exits.

277

Initializing the C++ interface

Link library location

The libraries necessary to link applications that access the C++ interface are located in the following directories:

Linux

abaqus_dir/code/lib

Windows

abaqus_dir\code\lib

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location of abaqus_dir

at your site, type abaqus whereami at an operating system prompt.

During linking, the ABQodb library and several other libraries shipped with the Abaqus release are used to resolve all
the functions available in the interface to the output database. The command used by Abaqus to link runtime libraries
(for example, for user subroutines) is available through the Abaqus environment variable link_sl. Additional information
about linking with the Abaqus libraries, including the names of all libraries which must be specified as part of the link
command, may be obtained by running the abaqus make utility in verbose mode with a verbosity level of 3.

Abaqus Scripting User's Guide278

Link library location

Runtime library location

The runtime libraries required to execute a program that accesses the C++ interface are located in the following
directories:

Linux

abaqus_dir/code/bin

Windows

abaqus_dir\code\bin

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location of abaqus_dir

at your site, type abaqus whereami at an operating system prompt.

The correct path to the Abaqus runtime libraries must be specified prior to starting the user application. The runtime
library path is typically set using the system environment variable LD_LIBRARY_PATH, but the method used to set
the path may vary depending on your operating system configuration. The ABQodb library and several utility libraries
resolve all the functions available in the interface to the output database, as described in Link library location. At
runtime these libraries depend on many of the underlying Abaqus libraries. As a result, if you do not define the correct
runtime library path, your application will not run.

279

Runtime library location

Header file location

The header files required to compile a program that accesses the C++ interface are located in the following directories:

Linux

abaqus_dir/code/include

Windows

abaqus_dir\code\include

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location of abaqus_dir

at your site, type abaqus whereami at an operating system prompt.

Only odb_API.h must be included to access the C++ interface, but the path to the header files must be provided
during compilation.

Abaqus Scripting User's Guide280

Header file location

The Abaqus C++ API architecture

This section describes the architecture of the Abaqus C++ interface to an output database.
The output database is an object-oriented database, which means that the data are held by “objects” (C++ classes)
that have certain behavior (C++ methods). The methods of an object in the database allow access to and
manipulation of the data held by the object. The data members of an object can be either primitives (integer,
floating point, string) or other objects.

In this section:

• Class naming convention

• Constructors

• Header files

281

Class naming convention

All class names start with odb_ to avoid possible name clashes. For example, the string class is named odb_String.

Abaqus Scripting User's Guide282

Class naming convention

Constructors

A constructor is a method that creates an object. The Abaqus C++ API uses the following three types of constructors:

Constructors for nonpersistent objects

Constructors for nonpersistent objects are the standard C++ constructors. For example,

 odb_String partName("New_Part");

Constructors for persistent objects

You create a persistent object by calling a method on an existing Abaqus C++ API object. In Abaqus the
convention is that the constructor method name corresponds to the name of the object created and that the first
letter of the constructor name is capitalized. The object can be accessed using the return value of the constructor
call or using a lowercase version of the method name. For example, a Frame object can be created using the
following:

 odb_Frame s1_writeFrame2 = step1.Frame(2, 1.3,
 "frame 2 of step1 at time 1.3");

The Frame object can be retrieved with the following:

 odb_Frame& s1_readFrame2 = step1.frames(1);

Constructors for objects created in large quantities

For efficiency the constructors for objects that you create in large quantities, such as elements, nodes, and field
values, do not follow the capitalized constructor name rule used for persistent objects. Nodes, elements, and
field values are created using the addNodes, addElements, and addData methods, respectively. For
example, you use the addNodes method to create and retrieve nodes:

 part1.addNodes(nodeLabels, coordinates, nodeSetName);
 const odb_SequenceNode& nodeSeq = part1.nodes();

 odb_Node node1 = part1.nodes(1);

283

Constructors

Header files

To use a class in a C++ program, the relevant header files must be included. The naming convention followed is that
the file name is the same as the name of the class declared in the header file. For example, the odb_FieldValue object
is declared in the file odb_FieldValue.h. The file odb_API.h includes all the header files required to use the
API. Other header files must be included to use some classes:

• To access material objects you must include the file odb_MaterialTypes.h.

• To access section objects you must include the file odb_SectionTypes.h.

Abaqus Scripting User's Guide284

Header files

Utility interface

The Abaqus C++ API provides a set of utilities that allow a user to access certain commonly used functionality
(such as strings, sequences (lists), and repositories) quickly and easily using a set of supported and maintained
interfaces.

In this section:

• Utility interface classes

• Utility interface examples

285

Utility interface classes

The following interface classes are provided:

Strings

The odb_String object provides a convenient means of storing and passing strings. The odb_String object also
provides a simple interface to append and modify the data stored in the string.

Sequences

An odb_Sequence class is a container used to hold an ordered list of objects of a specific type. Data can be
appended and retrieved from the sequence.

The following odb_Sequence objects are provided to store integer, float, and enumeration data:

• odb_SequenceInt

• odb_SequenceFloat

• odb_SequenceString

• odb_SequenceInvariant

• odb_SequenceElementFace

Sequences of sequences are also available in the following forms:

• odb_SequenceSequenceFloat

• odb_SequenceSequenceSequenceFloat

• odb_SequenceSequenceInt

• odb_SequenceSequenceElementFace

The following Abaqus objects are also stored as sequences:

• odb_SequenceNode

• odb_SequenceElement

• odb_SequenceFieldValue

• odb_SequenceFrame

• odb_SequenceSectionPoint

• odb_SequenceLoadCase

The following Abaqus object can be collected in a sequence for utility operations:

• odb_SequenceFieldOutput

Repositories

Repositories are provided to store objects retrieved by name. Both the repositories and the content of the
repositories are created by the API; the user can only retrieve objects from repositories. Iterators are provided
to navigate the repositories.

The following Abaqus repositories are provided:

• odb_PartRepository

Abaqus Scripting User's Guide286

Utility interface classes

• odb_FieldOutputRepository

• odb_SectionCategoryRepository

• odb_HistoryRegionRepository

• odb_SetRepository

• odb_HistoryOutputRepository

• odb_StepRepository

• odb_InstanceRepository

More detail on these interface utility objects can be found in Odb commands.

287Abaqus Scripting User's Guide

Utility interface classes

Utility interface examples

The following examples demonstrate the utility interface for each of the utility interface classes discussed:

Strings

 odb_String type = stressField.baseElementTypes()[0];
 odb_String elementType =
 odb_String("Element type is ") + type;
 cout << elementType.CStr() << endl;

Sequences

 odb_Set& mySurface = rootAssy.surfaces()["TARGET"];
 const odb_String instanceName = "PART-1-1";
 const odb_SequenceElementFace allFaces =
 mySurface.faces(instanceName);
 odb_SequenceSequenceElementFace newFaces;
 int allFaces_size = allFaces.size();
 for (int i=0; i<allFaces_size; i++) {
 const odb_SequenceElementFace fList = allFaces[i];
 odb_SequenceElementFace newList;
 int fList_size = fList.size();
 for (int j=0; j<fList_size; j++) {
 const odb_Enum::odb_ElementFaceEnum face = fList[j];
 newList.append(face);
 }
 newFaces.append(newList);
 }

Repositories

 odb_StepRepository stepCon = odb.steps();
 odb_StepRepositoryIT iter (stepCon);
 for (iter.first(); !iter.isDone(); iter.next()) {
 cout << "step name : " << iter.currentKey().CStr() << endl;
 const odb_Step& step = iter.currentValue();
 cout << "step description : " << step.description().CStr();
 cout << endl;
 }

Abaqus Scripting User's Guide288

Utility interface examples

Reading from an output database

The following sections describe how you use Abaqus C++ API commands to read data from an output database.

In this section:

• The Abaqus/CAE Visualization module tutorial output database

• Making the Odb commands available

• Opening an output database

• Reading model data

• Reading results data

• Reading field output data

• Using bulk data access to an output database

• Using regions to read a subset of field output data

• Reading history output data

• An example of reading field data from an output database

289

The Abaqus/CAE Visualization module tutorial output database

The following sections describe how you can access the data in an output database. Examples are included that refer
to the Abaqus/CAE Visualization module tutorial output database, viewer_tutorial.odb. This database is
generated by the input file from Case 2 of the example problem, Indentation of an elastomeric foam specimen with a

hemispherical punch. The problem studies the behavior of a soft elastomeric foam block indented by a heavy metal
punch. The tutorial shows how you can use the Visualization module to view the data in the output database. The
tutorial describes how you can choose the variable to display, how you can step through the steps and frames in the
analysis, and how you can create X–Y data from history output.

You are encouraged to copy the tutorial output database to a local directory and experiment with the Abaqus C++ API.
The output database and the example scripts from this guide can be copied to the user's working directory using the
abaqus fetch utility:

abaqus fetch job=name

where name.C is the name of the program or name.odb is the name of the output database (see Fetching Sample

Input Files). For example, use the following command to retrieve the tutorial output database:

abaqus fetch job=viewer_tutorial

Abaqus Scripting User's Guide290

The Abaqus/CAE Visualization module tutorial output database

Making the Odb commands available

To make the Odb commands available to your program, you first need to include the output database interface classes
using the following statement:

#include <odb_API.h>

To make the material and section Odb commands available to your program, you also need to include their output
database classes:

#include <odb_MaterialTypes.h>
#include <odb_SectionTypes.h>

291

Making the Odb commands available

Opening an output database

You use the openOdb method to open an existing output database. For example, the following statement opens the
output database used by the Abaqus/CAE Visualization module tutorial:

 odb_Odb& odb = openOdb("viewer_tutorial.odb");

After you open the output database, you can access its contents using the methods and members of the Odb object
returned by the openOdb method. In the above example the Odb object is referred to by the variable odb. For a full
description of the openOdb command, see openOdb.

Abaqus Scripting User's Guide292

Opening an output database

Reading model data

The following list describes the objects in model data and the commands you use to read model data. Many of the
objects are repositories, and you will find it useful to use the repository iterators to determine the keys of the repositories.
For more information on repositories and sequences, see Utility interface.

The root assembly

An output database contains only one root assembly. You access the root assembly through the OdbAssembly
object.

 odb_Assembly& rootAssy = odb.rootAssembly();

Part instances

Part instances are stored in the instance repository under the OdbAssembly object. The following statements
display the repository keys of the part instances in the tutorial output database:

 odb_InstanceRepositoryIT instIter(rootAssy.instances());
 for (instIter.first(); !instIter.isDone(); instIter.next())
 cout << instIter.currentKey().CStr() << endl;

The output database contains only one part instance, and the resulting output is

PART-1-1

From a part instance or part you can retrieve the node and element information as follows:

 {
 odb_Instance& instance1 =
 rootAssy.instances()["PART-1-1"];
 odb_Enum::odb_DimensionEnum instanceType =
 instance1.embeddedSpace();
 const odb_SequenceNode& nodeList = instance1.nodes();
 int nodeListSize = nodeList.size();
 if (instanceType == odb_Enum::THREE_D) {
 for (int n=0; n<nodeListSize; n++) {
 const odb_Node node = nodeList[n];
 int nodeLabel = node.label();
 const float* const coord = node.coordinates();
 cout << "Xcoord: " << coord[0] << " , Ycoord: "
 << coord[1] << " , Zcoord: " << coord[2] << endl;
 }
 }
 else if((instanceType == odb_Enum::TWO_D_PLANAR) ||
 (instanceType == odb_Enum::AXISYMMETRIC)) {
 for (int n=0; n<nodeListSize; n++) {
 const odb_Node node = nodeList[n];
 int nodeLabel = node.label();
 const float* const coord = node.coordinates();
 cout << "Xcoord: " << coord[0] << " , Ycoord: "
 << coord[1] << endl;
 }
 }

 const odb_SequenceElement& elementList =
 instance1.elements();

293

Reading model data

 int elementListSize = elementList.size();
 cout << "Element Connectivity Data" << endl;
 cout << "Element Label : constituent node labels ..."
 << endl;
 int numNodes = 0;
 for (int e=0; e<elementListSize; e++) {
 const odb_Element element = elementList[e];
 int elementLabel = element.label();
 cout << elementLabel <<" : ";
 odb_String elementType = element.type();
 const int* const conn =
 element.connectivity(numNodes);
 for (int j=0; j<numNodes; j++)
 cout << " " << conn[j];
 cout << endl;
 }
 }

Regions

Regions in the output database are OdbSet objects. Regions refer to the part and assembly sets stored in the
output database. A part set refers to elements or nodes in an individual part and appears in each instance of the
part in the assembly. An assembly set refers to the elements or nodes in part instances in the assembly. A region
can be one of the following:

• A node set

• An element set

• A surface

For example, the following statement displays the node sets in the OdbAssembly object:

 cout << "Node set keys:" << endl;
 odb_SetRepositoryIT setIter(rootAssy.nodeSets());
 for (setIter.first(); !setIter.isDone(); setIter.next())
 cout << setIter.currentKey().CStr() << endl;

The resulting output is

Node set keys:
ALL NODES

The following statements display the node sets and the element sets in the PART-1-1 part instance:

 {
 odb_InstanceRepository& iCon =
 odb.rootAssembly().instances();
 odb_Instance& instance = iCon["PART-1-1"];

 cout << "Node set keys:" << endl;
 odb_SetRepositoryIT setItN(instance.nodeSets());
 for (setItN.first(); !setItN.isDone(); setItN.next())
 cout << setItN.currentKey().CStr() << endl;

 cout << "Element set keys:" << endl;
 odb_SetRepositoryIT setItE(instance.elementSets());
 for (setItE.first(); !setItE.isDone(); setItE.next())
 cout << setItE.currentKey().CStr() << endl;

Abaqus Scripting User's Guide294

Reading model data

 }

The resulting output is

Node set keys:
BOT
N481
TOP
N1
...
Element set keys:
CENT
FOAM
...

The following statement assigns a variable (topNodeSet) to the 'TOP' node set in the PART-1-1 part
instance:

 odb_InstanceRepository& iCon =
 odb.rootAssembly().instances();
 odb_Instance& instance = iCon["PART-1-1"];
 odb_Set& topNodeSet = instance.nodeSets()["TOP"];

The type of the object to which topNodeSet refers is OdbSet. After you create a variable that refers to a
region, you can use the variable to refer to a subset of field output data, as described in Using regions to read a

subset of field output data.

To access the set information on a part instance:

 // node set information

 odb_Set& nodeSet = instance.nodeSets()["CENTER"];
 const odb_SequenceNode& nodeList = nodeSet.nodes();

 // surface information
 odb_Set& surface = instance.surfaces()["IMPACTOR"];
 const odb_SequenceElement& elementList =
 surface.elements();
 const odb_SequenceElementFace& faces =
 surface.faces();

 // iterators are used to get all sets
 odb_SetRepository& elementSetRepository =
 instance.elementSets();
 odb_SetRepositoryIT elSetRepIter(elementSetRepository);
 for (elSetRepIter.first(); !elSetRepIter.isDone();
 elSetRepIter.next()) {
 odb_Set& set =
 elementSetRepository[elSetRepIter.currentKey()];
 cout << "element set " << elSetRepIter.currentKey().CStr()
 << endl;
 cout << " number of elements : ";
 cout << set.size() << endl;
 }

The set information in an assembly set is keyed by instance name and can be accessed using the following:

 // assembly surface information
 odb_Set& aSurface = rootAssy.surfaces()["TARGET"];
 odb_SequenceString instanceNames =

295Abaqus Scripting User's Guide

Reading model data

 aSurface.instanceNames();
 int totalNames = instanceNames.size();
 for (int name=0; name<totalNames; name++) {
 const odb_String& iName = instanceNames[name];
 const odb_SequenceElement& els =
 aSurface.elements(iName);
 const odb_SequenceElementFace& face =
 aSurface.faces(iName);
 }

Materials

You can read material data from an output database.

Materials are stored in the materials repository under the Odb object.

Extend the Material commands available to the Odb object using the following statement:

odb_MaterialApi materialApi;
 odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);

Access the materials repository using the command:

 odb_MaterialContainer& materialContainer = materialApi.materials();
 odb_MaterialContainerIT matIT(materialContainer);
 for (matIT.first(); !matIT.isDone(); matIT.next()) {
 cout << "Material Name : " << matIT.currentKey().CStr() << endl;
 const odb_Material& myMaterial = matIT.currentValue();

To print isotropic elastic material properties in a material object:

odb_Elastic elastic = myMaterial.elastic();
if (elastic.hasValue()) {
 if (elastic.type() == "ISOTROPIC") {
 cout << "isotropic elastic behavior, type = "
 << elastic.moduli().CStr() << endl;
 odb_String tableHeader("Youngs modulus Poisson's ratio ");
 if (elastic.temperatureDependency())
 tableHeader.append("Temperature ");
 for (int i = 0, max = elastic.dependencies(); i < max; ++i)
 tableHeader.append(" field # ").append(i);
 cout << tableHeader.CStr() << endl;
 odb_SequenceSequenceFloat table = elastic.table();
 for (int r = 0, rows = table.size(); r <rows; ++r) {
 const odb_SequenceFloat& data = table[r];
 for (int c = 0, cols = data.size(); c < cols; ++c) {
 cout << data[c] << " ";
 }
 cout << endl;
 }
 }
}

Some Material definitions have suboptions. For example, to access the smoothing type used for biaxial test data
specified for a hyperelastic material:

odb_Hyperelastic hyperelastic = myMaterial.hyperelastic();
if (hyperelastic.hasValue()) {
 bool testData = hyperelastic.testData();
 odb_BiaxialTestData biaxialTestData =
 hyperelastic.biaxialTestData();
 odb_String smoothingType("smoothing type: ");

Abaqus Scripting User's Guide296

Reading model data

 if (biaxialTestData.hasValue()) {
 odb_Union smoothing = biaxialTestData.smoothing();
 switch(smoothing.type()) {
 case (odb_UNION_STRING):
 smoothingType.append(smoothing.getString());
 break;
 case (odb_UNION_INT):
 smoothingType.append(smoothing.getInt());
 break;
 case (odb_UNION_FLOAT):
 smoothingType.append(smoothing.getFloat());
 break;
 case (odb_UNION_DOUBLE):
 smoothingType.append(smoothing.getDouble());
 break;
 case (odb_UNION_BOOL):
 smoothingType.append(smoothing.getBool());
 break;
 }
 cout << smoothingType.CStr() << endl;
 }
}

Material commands describes the Material object commands in more detail; the odb_Union object is defined in
Union object.

Sections

You can read section data from an output database.

Sections are stored in the sections repository under the Odb object.

Extend the Section commands available to the Odb object using the following statement:

 odb_SectionApi sectionApi;
 odb.extendApi(odb_Enum::odb_SECTION,sectionApi);

The following statements display the repository keys of the sections in an output database:

 odb_SectionContainer& sectionContainer =
 sectionApi.sections();
odb_SectionContainerIT scIT(sectionContainer);
for (scIT.first(); !scIT.isDone(); scIT.next()) {
 cout << "Section Name : " << scIT.currentKey().CStr() << endl;
}

The Section object can be one of the various section types. The odb_isA method can be used to determine the
section type. For example, to determine whether a section is of type “homogeneous solid section” and to print
its thickness and associated material name:

 for (scIT.first(); !scIT.isDone(); scIT.next()) {
 const odb_Section& mySection = scIT.currentValue();
 if (odb_isA(odb_HomogeneousSolidSection,mySection)) {
 odb_HomogeneousSolidSection homogeneousSolidSection =
 odb_dynamicCast(
 odb_HomogeneousSolidSection, mySection);
 odb_String material =
 homogeneousSolidSection.material();
 cout << "material name = " << material.CStr() << endl;
 float thickness = homogeneousSolidSection.thickness();
 cout << "thickness = " << thickness << endl;

297Abaqus Scripting User's Guide

Reading model data

 }
}

Similarily, to access the beam profile repository:

odb_ProfileContainer profileContainer =
 sectionApi.profiles();
int numProfiles = sectionApi.numProfiles();
cout << "Total Number of profiles in the ODB: "
 << numProfiles << endl;

The Profile object can be one of the various profile types. The odb_isA method can be used to determine the
profile type. For example, to output the radius of all circular profiles in the odb:

 odb_ProfileContainerIT pcIT(profileContainer);
for (pcIT.first(); !pcIT.isDone(); pcIT.next()) {
 const odb_Profile& myProfile = pcIT.currentValue();
 if (odb_isA(odb_CircularProfile,myProfile)) {
 odb_CircularProfile circularProfile =
 odb_dynamicCast(odb_CircularProfile, myProfile);
 cout << "profile name = " << myProfile.name().CStr()
 << " radius = " << circularProfile.r();
 }
}

Section assignments

Section assignments are stored in the sectionAssignments repository under the OdbAssembly object.

All elements in an Abaqus analysis need to be associated with section and material properties. Section assignments
provide the relationship between elements in a part instance and their section properties. The section properties
include the associated material name. To access the sectionAssignments repository from the PartInstance object:

odb_InstanceRepository& instanceRepository =
 odb.rootAssembly().instances();
odb_InstanceRepositoryIT instIT(instanceRepository);
for (instIT.first(); !instIT.isDone(); instIT.next()) {
 const odb_Instance& instance = instIT.currentValue();
 odb_SequenceSectionAssignment sectionAssignmentSeq =
 instance.sectionAssignments();
 int sects = sectionAssignmentSeq.size();
 cout << "Instance : " << instance.name().CStr() << endl;
 for (int s = 0; s < sects; ++s) {
 odb_SectionAssignment sa = sectionAssignmentSeq[s];
 odb_String sectionName = sa.sectionName();
 cout << " Section : " << sectionName.CStr() << endl;
 odb_Set set = sa.region();
 const odb_SequenceElement& elements = set.elements();
 int size = elements.size();
 cout << " Elements associated with this section : "
 << endl;
 for (int e = 0; e< size; ++e)
 cout << elements[e].label() << endl;
 }
}

Abaqus Scripting User's Guide298

Reading model data

Reading results data

The following list describes the objects in results data and the commands you use to read results data. As with model
data you will find it useful to use the repository iterators to determine the keys of the results data repositories.

Steps

Steps are stored in the steps repository under the Odb object. The key to the steps repository is the name of the
step. The following statements print out the keys of each step in the repository:

 odb_StepRepositoryIT stepIter(odb.steps());
 for (stepIter.first(); !stepIter.isDone();
 stepIter.next())
 cout << stepIter.currentKey().CStr() << endl;

The resulting output is

Step-1
Step-2
Step-3

Frames

Each step contains a sequence of frames, where each increment of the analysis (or each mode in an eigenvalue
analysis) that resulted in output to the output database is called a frame. The following statement assigns a
variable to the last frame in the first step:

 odb_Step& step = odb.steps()["Step-1"];
 odb_SequenceFrame& allFramesInStep = step.frames();
 int numFrames = allFramesInStep.size();
 odb_Frame& lastFrame = allFramesInStep[numFrames-1];

299

Reading results data

Reading field output data

Field output data are stored in the fieldOutputs repository under the OdbFrame object. The key to the repository is the
name of the variable. The following statements list all the variables found in the last frame of the first step (the statements
use the variable lastFrame that we defined previously):

 odb_FieldOutputRepository& fieldOutputRep =
 lastFrame.fieldOutputs();
 odb_FieldOutputRepositoryIT fieldIter(fieldOutputRep);
 for (fieldIter.first(); !fieldIter.isDone(); fieldIter.next())
 cout << fieldIter.currentKey().CStr() << endl;

S
U
LE
CSHEAR1 ASURF/BSURF
CSLIP1 ASURF/BSURF
CPRESS ASURF/BSURF
COPEN ASURF/BSURF
UR3

Different variables can be written to the output database at different frequencies. As a result, not all frames will contain
all the field output variables.

You can use the following to view all the available field data in a frame:

 for (fieldIter.first(); !fieldIter.isDone();
 fieldIter.next()) {
 odb_FieldOutput& field =
 fieldOutputRep[fieldIter.currentKey()];
 const odb_SequenceFieldValue& seqVal = field.values();
 const odb_SequenceFieldLocation& seqLoc =
 field.locations();
 cout << field.name().CStr() << " : " << field.description().CStr()
 << endl;
 cout << " Type: " << field.type() << endl;
 int numLoc = seqLoc.size();
 for (int loc = 0; loc<numLoc; loc++){
 cout << "Position: "<<seqLoc.constGet(loc).position();
 }
 cout << endl;
 }

The resulting print output lists all the field output variables in a particular frame, along with their type and position.

S : Stress components
 Type: 7
 Number of fieldValues : 135
 Number of locations : 1
U : Spatial displacement
 Type: 3
 Number of fieldValues : 161
 Number of locations : 1

In turn, a FieldOutput object has a method values that returns a reference to a sequence of FieldValue objects that
contain data. Each FieldValue object in the sequence corresponds to a particular location in the model. You can obtain

Abaqus Scripting User's Guide300

Reading field output data

the data corresponding to each FieldValue object using the data method, which returns a pointer to an array that
contains the results at the current location. For example,

 const odb_SequenceFieldValue& displacements =
 lastFrame.fieldOutputs()["U"].values();
 int numValues = displacements.size();
 int numComp = 0;
 for (int i=0; i<numValues; i++) {
 const odb_FieldValue val = displacements[i];
 cout << "Node = " << val.nodeLabel();
 const float* const U = val.data(numComp);
 cout << ", U = ";
 for (int comp=0;comp<numComp;comp++)
 cout << U[comp] << " ";
 cout << endl;
 }

The resulting output is

Node = 1 U[x] = 0.0000, U[y] = -76.4580
Node = 3 U[x] = -0.0000, U[y] = -64.6314
Node = 5 U[x] = 0.0000, U[y] = -52.0814
Node = 7 U[x] = -0.0000, U[y] = -39.6389
Node = 9 U[x] = -0.0000, U[y] = -28.7779
Node = 11 U[x] = -0.0000, U[y] = -20.3237...

The data in the FieldValue object depend on the field output variable, which is displacement in the above example. In
the example above the field output for displacements was of type NODAL and there is a FieldValue object for the
output at each node. In this case the data method returns a pointer to an array containing the displacements at the node.
For INTEGRATION_POINT data each integration point in an element will correspond to a different FieldValue object,
and the data method will return a pointer to an array containing the element results data at that particular integration
point.

Note:

Access to field data using the FieldValue object will be deprecated in future releases of the C++ version of the
Abaqus Scripting Interface because of the improved performance of the bulk data access method. For more
information, see FieldBulkData object and Using bulk data access to an output database.

301Abaqus Scripting User's Guide

Reading field output data

Using bulk data access to an output database

If you need to access all the data in a field from an output database, you can use the bulkDataBlocks method of
the FieldOutput object to read the data in bulk form. The bulkDataBlocks method returns a reference to a sequence
of FieldBulkData objects, each of which contains the entire output for a class of nodes or elements, blocked together
into an array.

The data method of the FieldBulkData object returns an array of data corresponding to the output for the entire class
of elements or nodes. The length and width methods of theFieldBulkData object return the number of output
locations and the number of components at each output location, respectively. For example,

 odb_FieldOutput& disp = lastFrame.fieldOutputs()["U"];
 const odb_SequenceFieldBulkData& seqDispBulkData =
 disp.bulkDataBlocks();
 int numDispBlocks = seqDispBulkData.size();
 for (int iblock=0; iblock<numDispBlocks; iblock++) {
 const odb_FieldBulkData& bulkData =
 seqDispBulkData[iblock];
 int numNodes = bulkData.length();
 int numComp = bulkData.width();
 float* data = bulkData.data();
 int* nodeLabels = bulkData.nodeLabels();
 for (int node=0,pos=0; node<numNodes; node++) {
 int nodeLabel = nodeLabels[node];
 cout << "Node = " << nodeLabel;
 cout << " U = ";
 for (int comp=0;comp<numComp;comp++)
 cout << data[pos++] << " ";
 cout << endl;
 }
 }

The numberOfElements method returns the number of elements in a block. When you are accessing the results
for elements, the numberOfElements method is useful in determining the number of output locations per element.
For example, when you are accessing element data at integration points, you may need to determine the number of
integration points per element. You can determine the number of integration points per element by dividing the length
of the block, which is the total number of output locations, by the number of elements in the block. For example,

 odb_FieldOutput& stress = lastFrame.fieldOutputs()["S"];
 const odb_SequenceFieldBulkData& seqStressBulkData =
 stress.bulkDataBlocks();
 int numStressBlocks = seqStressBulkData.size();
 for (int jblock=0; jblock<numStressBlocks; jblock++) {
 const odb_FieldBulkData& bulkData =
 seqStressBulkData[jblock];
 int numValues = bulkData.length();
 int numComp = bulkData.width();
 float* data = bulkData.data();
 int nElems = bulkData.numberOfElements();
 int numIP = numValues/nElems;
 int* elementLabels = bulkData.elementLabels();
 int* integrationPoints = bulkData.integrationPoints();
 const odb_SectionPoint& myBulkSectionPoint =
 bulkData.sectionPoint();
 int sectPoint = myBulkSectionPoint.number();
 if (sectPoint)
 cout << "Section Point: " << sectPoint << endl;

Abaqus Scripting User's Guide302

Using bulk data access to an output database

 cout << "Base Element type: "
 << bulkData.baseElementType().CStr() << endl;
 for (int elem = 0, ipPosition=0, dataPosition=0;
 elem<numValues; elem+=numIP) {
 cout << "El label: " << elementLabels[elem] << endl;
 for (int ip = 0; ip<numIP; ip++) {
 cout << "Int. Point: "
 << integrationPoints[ipPosition++] << endl;
 cout << "S = ";
 for (int comp = 0; comp<numComp; comp++)
 cout << " " << data[dataPosition++] << " ";
 cout << endl;
 }
 }
 }

For more information, see FieldBulkData object.

The bulkDataBlocks method is an alternative to the values method of a FieldOutput object, described in Reading

field output data. The values method of a FieldOutput object returns a reference to a sequence of FieldValue objects
that contain data. Each FieldValue object in the sequence provides data for a unique location in the model.

Performance can be increased with the bulk data interface because the field data stored in a bulk data block are made
available in a single array of floating point numbers. If you access the same data in nonbulk form, you must loop over
a sequence of FieldValue objects and then access the data for each location separately. Traversing an array can prove
to be significantly faster than traversing a sequence of objects and extracting data stored within the objects. As a result,
accessing the data in an output database using the bulk data interface can be significantly faster than the nonbulk form.

If you do not need to access large amounts of data, you may get better performance with the nonbulk access method.
This is especially true if the number of output locations you are accessing is smaller than the number of elements in a
class. Similarly, the nonbulk access method may be faster if the number of nodes you are accessing is smaller than the
number of nodes in an instance. The nonbulk access method is also better suited for random access to an output database,
where successive output locations to be accessed may lie in completely different blocks.

303Abaqus Scripting User's Guide

Using bulk data access to an output database

Using regions to read a subset of field output data

After you have created an OdbSet object using model data, you can use the getSubset method to read only the data
corresponding to that region. Typically, you will be reading data from a region that refers to a node set or an element
set. For example, the following statements create a variable called center that refers to the node set PUNCH at the
center of the hemispherical punch. In a previous section you created the displacement variable that refers to the
displacement of the entire model in the final frame of the first step. Now you use the getSubset command to get
the displacement for only the center region.

 odb_Set& center = instance.nodeSets()["PUNCH"];
 odb_FieldOutput& fieldU = lastFrame.fieldOutputs()["U"];
 odb_FieldOutput centerDisp = fieldU.getSubset(center);
 const odb_SequenceFieldValue& centerValues =
 centerDisp.values();
 const odb_FieldValue val = centerValues.value(0);
 const float* const data = val.data(numComp);
 cout << " Node: " << val.nodeLabel() << endl;
 cout << " U = ";
 for (int comp=0;comp<numComp;comp++)
 cout << data[comp] << " ";
 cout << endl;

The resulting output is

Node: 1000
U = 0.0000 -76.4555

The arguments to getSubset are a region, an element type, a position, or section point data. The following is a
second example that uses an element set to define the region and generates formatted output for the stress at integration
points for CAX4 elements from the element set "CENT":

 odb_Set& topCenter = instance.elementSets()["CENT"];
 odb_Step& step2 = odb.steps()["Step-2"];
 odb_String CAX4 = "CAX4";
 odb_FieldOutput& stressField =
 step2.frames(3).fieldOutputs()["S"];
 odb_FieldOutput fieldCAX4 = stressField.getSubset(CAX4);
 odb_FieldOutput fieldIP =
 fieldCAX4.getSubset(odb_Enum::INTEGRATION_POINT);
 odb_FieldOutput fieldTopCenter = fieldIP.getSubset(topCenter);
 const odb_SequenceFieldValue& vals = fieldTopCenter.values();
 int valSize = vals.size();
 int dSize = 0;
 for (int l=0; l<valSize; l++) {
 const odb_FieldValue val = vals[l];
 cout << "Element label = " << val.elementLabel();
 cout << " Integration Point = " << val.integrationPoint();
 cout << endl;
 const float* const data = val.data(dSize);
 cout << " S : ";
 for (int k=0; k < dSize; k++) {
 cout << data[k] << " ";
 }
 cout << endl;
 }

Abaqus Scripting User's Guide304

Using regions to read a subset of field output data

The resulting output is

Element label = 1 Integration Point = 1
S : 0.01230 -0.05658 0.00892 -0.00015
Element label = 1 Integration Point = 2
S : 0.01313 -0.05659 0.00892 -0.00106
Element label = 1 Integration Point = 3
S : 0.00619 -0.05642 0.00892 -0.00023
Element label = 1 Integration Point = 4
S : 0.00697 -0.05642 0.00892 -0.00108
Element label = 11 Integration Point = 1
S : 0.01281 -0.05660 0.00897 -0.00146
Element label = 11 Integration Point = 2
S : 0.01183 -0.05651 0.00897 -0.00257
Element label = 11 Integration Point = 3 ...

Possible values for the enumeration for the position are:

• INTEGRATION_POINT

• NODAL

• ELEMENT_NODAL

• CENTROID

If the requested field values are not found in the output database at the specified odb_Enum::ELEMENT_NODAL or
odb_Enum::CENTROID positions, they are extrapolated from the field data at the odb_Enum::INTEGRATION_POINT
position.

305Abaqus Scripting User's Guide

Using regions to read a subset of field output data

Reading history output data

History output is output defined for a single point or for values calculated for a portion of the model as a whole, such
as energy. Depending on the type of output expected, the historyRegions repository contains data from one of the
following:

• a node

• an integration point

• a region

• a material point

Note: History data from an analysis cannot contain multiple points.

The history data object model is shown in Figure 1.

steps

frames

 = Container

 = Singular object

odb

rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions

point

historyOutputs

fieldOutputs

materials

Figure 1:The history data object model.

In contrast to field output, which is associated with a frame, history output is associated with a step. History output
data are stored in the historyRegions repository under an OdbStep object. Abaqus creates keys to the historyRegions
repository that describe the region; for example,

• 'Node PART-1-1.1000'

• 'Element PART-1-1.2 Int Point 1'

• 'Assembly rootAssembly'

The output from all history requests that relate to a specified point is collected in one HistoryRegion object. A
HistoryRegion object contains multiple HistoryOutput objects. Each HistoryOutput object, in turn, contains a sequence
of (frameValue, value) sequences. In a time domain analysis (domain=TIME) the sequence is a tuple of (stepTime,
value). In a frequency domain analysis (domain=FREQUENCY) the sequence is a tuple of (frequency, value). In a
modal domain analysis (domain=MODAL) the sequence is a tuple of (mode, value).

In the analysis that generated the Abaqus/CAE Visualization module tutorial output database, the user asked for the
following history output:

Abaqus Scripting User's Guide306

Reading history output data

At the rigid body reference point (Node 1000)

• U

• V

• A

At the corner element

• MISES

• LE22

• S22

The history output data can be retrieved from the HistoryRegion objects in the output database. The tutorial output
database contains HistoryRegion objects that relate to the rigid body reference point and the integration points of the
corner element as follows:

• 'Node PART-1-1.1000'

• 'Element PART-1-1.1 Int Point 1'

• 'Element PART-1-1.1 Int Point 2'

• 'Element PART-1-1.1 Int Point 3'

• 'Element PART-1-1.1 Int Point 4'

The following statements read the tutorial output database and write the U2 history data from the second step to an
ASCII file that can be plotted by Abaqus/CAE:

 odb_Step& step = odb.steps()["Step-2"];
 odb_Instance& instance =
 odb.rootAssembly().instances()["PART-1-1"];
 odb_Set& nSet = instance.nodeSets()["PUNCH"];
 const odb_Node node = nSet.nodes().constGet(0);
 odb_HistoryPoint hPoint(node);
 odb_HistoryRegion& histRegion =
 step.getHistoryRegion(hPoint);
 odb_HistoryOutputRepository& hoCon =
 histRegion.historyOutputs();
 odb_HistoryOutput& histOutU2 = hoCon["U2"];
 odb_SequenceSequenceFloat data = histOutU2.data();
 int numHDat = data.size();
 for (int i=0; i<numHDat; i++) {
 odb_SequenceFloat pair = data[i];
 cout << pair.constGet(0) << " "
 << pair.constGet(1) << endl;
 }

The output in this example is a sequence of tuples containing the frame time and the displacement value. The example
uses nodal history data output. If the analysis requested history output from an element, the output database would
contain one HistoryRegion object and one HistoryPoint object for each integration point.

307Abaqus Scripting User's Guide

Reading history output data

An example of reading field data from an output database

The following program illustrates how you read model data and field output data from the output database used by the
Abaqus/CAE Visualization module tutorial output database.

Import the required modules:

#include <iostream.h>
#include <odb_API.h>

Open the output database used by the tutorial.

 odb_Odb& odb = openOdb("viewer_tutorial.odb");

Create a variable that refers to the last frame of the first step.

 odb_Step& step = odb.steps()["Step-1"];
 odb_SequenceFrame& allFramesInStep = step.frames();
 int numFrames = allFramesInStep.size();
 odb_Frame& lastFrame = allFramesInStep[numFrames-1];

Create a variable that refers to the displacement 'U' in the last frame of the first step.

odb_FieldOutput& displacements =
 lastFrame.fieldOutputs().get("U");

Create a variable that refers to the node set 'PUNCH' in the part instance'PART-1–1' :

odb_Instance& instance =
 odb.rootAssembly().instances()["PART-1-1"];
odb_Set& nodeSet =
 instance.nodeSets()["PUNCH"];

Create a variable that refers to the displacement of the node set in the last frame of the first step:

odb_FieldOutput myDisplacements =
 displacements.getSubset(nodeSet);

Finally, print some field output data from each node in the node set (a single node in this example).

const odb_FieldValue val = myDisplacements.values()[0];
const float* const data = val.data(numComp);
cout << " Node: " << val.nodeLabel() << endl;
cout << " U = ";
for (int comp=0;comp<numComp;comp++)
 cout << data[comp] << " ";
cout << endl;
cout << " Magnitude = " << val.magnitude();

The resulting output is

 Node : 1000
 U = 0.0000 , -76.4554
 Magnitude = 76.4554

Abaqus Scripting User's Guide308

An example of reading field data from an output database

Writing to an output database

You can write your own data to an output database, and you can use Abaqus/CAE to view the data.
Writing to an output database is very similar to reading from an output database. When you open an existing
database, the Odb object contains all the objects found in the output database, such as instances, steps, and field
output data. In contrast, when you are writing to a new output database, these objects do not exist. As a result
you must use a constructor to create the objects. For example, you use the Part constructor to create a Part
object, the Instance constructor to create an OdbInstance object, and the Step constructor to create an OdbStep
object.

After you create an object, you use methods of the objects to enter or modify the data associated with the object.
For example, if you are creating an output database, you first create an Odb object. You then use the Part
constructor to create a part. After creating the part, you use the addNodes and addElements methods of the
Part object to add nodes and elements, respectively. Similarly, you use the addData method of the FieldOutput
object to add field output data to the output database. After creating an output database, you should use the save
method on the Odb object to save the output database.

The example program in Creating an output database also illustrates how you can write to an output database.

In this section:

• Creating a new output database

• Writing model data

• Writing results data

• Writing field output data

• Default display properties

• Writing history output data

309

Creating a new output database

You use the Odb constructor to create a new, empty Odb object.

 odb_Odb& odb = Odb("myData","derived data",
 "test problem", "testWrite.odb");

For a full description of the Odb command, see Odb object. Abaqus creates the RootAssembly object when you create
or open an output database.

You use the save method to save the output database.

 odb.save();

For a full description of the save command, see save().

Abaqus Scripting User's Guide310

Creating a new output database

Writing model data

To define the geometry of your model, you first create the parts that are used by the model and then you add nodes
and elements to the parts. You then define the assembly by creating instances of the parts. If the output database already
contains results data, you should not change the geometry of the model. This is to ensure that the results remain
synchronized with the model.

Part

If the part was created by Abaqus/CAE, the description of the native Abaqus/CAE geometry is stored in the
model database, but it is not stored in the output database. A part is stored in an output database as a collection
of nodes, elements, surfaces, and sets. You use the Part constructor to add a part to the Odb object. You can
specify the type of the part; however, only DEFORMABLE_BODY is currently supported. For example,

 odb_Part& part1 = odb.Part("part-1",
 odb_Enum::THREE_D, odb_Enum::DEFORMABLE_BODY);

For a full description of the Part constructor, see OdbPart object. The new Part object is empty and does not
contain geometry. After you create the Part object, you then add nodes and elements.

You use the addNodes method to add nodes by defining node labels and coordinates. You can also define an
optional node set. For example,

 odb_SequenceInt nodeLabels;
 nodeLabels.append(1);
 nodeLabels.append(2);
 nodeLabels.append(3);
 nodeLabels.append(5);
 nodeLabels.append(7);
 nodeLabels.append(11);
 double c[6][3] = { {2.0, 1.0, 0.0},
 {1.0, 1.0, 0.0},
 {1.0, 0.0, 0.0},
 {2.0, 0.0, 0.0},
 {1.0, 0.0, 1.0},
 {2.0, 0.0, 1.0} };
 odb_SequenceSequenceFloat nodeCoor;
 for (int n=0; n<nodeLabels.size(); n++) {
 odb_SequenceFloat loc;
 for (int i=0; i<3; i++)
 loc.append(c[n][i]);
 nodeCoor.append(loc);
 }
 part1.addNodes(nodeLabels, nodeCoor, "nodes_1");

For a full description of the addNodes command, see addNodes(...).

Similarly, you use the addElements method to add elements to the part using a sequence of element labels,
element connectivity, and element type. You can also define an optional element set and an optional section
category. For example,

 odb_SequenceInt elLabels;
 elLabels.append(9);
 elLabels.append(99);
 odb_SequenceSequenceInt connect;
 const int numNodePerEl = 4;

311

Writing model data

 int conn[2][numNodePerEl] = {{1, 2, 3, 5},
 {5, 3, 7, 11}};
 for (int e=0; e<elLabels.size(); e++) {
 odb_SequenceInt l;
 for (int i=0; i<numNodePerEl; i++)
 l.append(conn[e][i]);
 connect.append(l);
 }
 part1.addElements(elLabels, connect, "S4R",
 "s4_els", shellCat);

For a full description of the addElements command, see addElements(...).

The RootAssembly object

The root assembly is created when you create the output database. You access the RootAssembly object using
the same syntax as that used for reading from an output database.

 odb_Assembly& rootAssy = odb.rootAssembly();

You can create both instances and regions on the RootAssembly object.

Part instances

You use the Instance constructor to create part instances of the parts you have already defined using the Part
constructor. For example,

 odb_Instance& instanceA =
 odb.rootAssembly().Instance("part-1-1", part1);

You can also supply an optional local coordinate system that specifies the rotation and translation of the part
instance. You can add nodes and elements only to a part; you cannot add elements and nodes to a part instance.
As a result, you should create the nodes and elements that define the geometry of a part before you instance the
part. For a full description of the Instance command, see OdbInstance object.

Regions

Region commands are used to create sets from element labels, node labels, and element faces. You can create a
set on a part, part instance, or the root assembly. Node and element labels are unique within an instance but not
within the assembly. As a result, a set on the root assembly requires the names of the part instances associated
with the nodes and elements. You can also use region commands to create surfaces.

For example,

 // An ElementSet on an instance
 odb_SequenceInt eLabelsA(2);
 eLabelsA.append(9);
 eLabelsA.append(99);
 instanceA.ElementSet("elSetA", eLabelsA);

 // A NodeSet on the rootAssembly

 odb_SequenceSequenceInt nodeLabelsRA;
 odb_SequenceString namesRA;
 namesRA.append("part-1-1");

Abaqus Scripting User's Guide312

Writing model data

 odb_SequenceInt nodeLabelsRA_A;
 nodeLabelsRA_A.append(5);
 nodeLabelsRA_A.append(11);
 nodeLabelsRA.append(nodeLabelsRA_A);
 const odb_Set& nSetRA = rootAssy.NodeSet("nodeSetRA",
 namesRA, nodeLabelsRA);

Materials

You use the Material object to list material properties. Material objects are members of the Odb object.

Materials are stored in the materials repository under the Odb object.

Extend the Material commands available to the Odb object using the following statement:

 odb_MaterialApi materialApi;
 odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);

To create an isotropic elastic material, with a Young's modulus of 12000.0 and an effective Poisson's ratio of
0.3 in the output database:

 odb_String materialName("Elastic Material");
 odb_Material& material = materialApi.Material(materialName);
 odb_SequenceSequenceFloat myTable;
 odb_SequenceFloat myData;
 myData.append(12000.0); myData.append(0.3);
 myTable.append(myData);
 odb_String type("ISOTROPIC");
 material.Elastic(myTable,type);

For more information, see Material commands.

Sections

You use the Section object to create sections and profiles. Section objects are members of the Odb object.

Sections are stored in the sections repository under the Odb object.

Extend the API commands available to the Odb object using the following statement:

 odb_SectionApi sectionApi;
 odb.extendApi(odb_Enum::odb_SECTION,
 sectionApi);

The following code creates a homogeneous solid section object. A Material object must be present before creating
a Section object. An exception is thrown if the material does not exist.

odb_String sectionName("Homogeneous Solid Section");
float thickness = 2.0;
odb_HomogeneousSolidSection& mySection =
 sectionApi.HomogeneousSolidSection(sectionName,
 materialName,
 thickness);

To create a circular beam profile object in the output database:

 odb_String profileName("Circular Profile");
 float radius = 10.00;
 sectionApi.CircularProfile(profileName, radius);

313Abaqus Scripting User's Guide

Writing model data

Section assignments

You use the SectionAssignment object to assign sections and their associated material properties to regions of
the model. SectionAssignment objects are members of the Odb object. For a full description of the assignSection
method, see assignSection(...).

All Elements in an Abaqus analysis need to be associated with section and material properties. Section assignments
provide the relationship between elements in an Instance object and their section properties. The section properties
include the associated material name. To create an element set and assign a section:

odb_SequenceInt setLabels;
setLabels.append(1);
setLabels.append(2);
elsetName = "Material 1";
odb_Set& elset = instance.ElementSet(elsetName,setLabels);
// section assignment on instance
instance.assignSection(elset,section);

Abaqus Scripting User's Guide314

Writing model data

Writing results data

To write results data to the output database, you first create the Step objects that correspond to each step of the analysis.
If you are writing field output data, you also create the Frame objects that will contain the field data. History output
data are associated with Step objects.

Steps

You use the Step constructor to create a results step for time, frequency, or modal domain results. For example,

 odb_Step& step1 = odb.Step("s1",
 "Perturbation Step", odb_Enum::TIME);
 odb_Step& step2 = odb.Step("sT",
 "Time domain analysis", odb_Enum::TIME, 1.0);
 odb_Step& step3 = odb.Step("sF",
 "Frequency analysis", odb_Enum::FREQUENCY, 123.4);

The Step constructor has an optional previousStepName argument that specifies the step after which this step
must be inserted in the steps repository. For a full description of the Step command, see Step(...).

Frames

You use the Frame constructor to create a frame for field output. For example,

 odb_Frame frameOne = step2.Frame(1, 0.3, "first frame");

For a full description of the Frame command, see Frame(...).

315

Writing results data

Writing field output data

A FieldOutput object contains a “cloud of data values” (e.g., stress tensors at each integration point for all elements).
Each data value has a location, type, and value. You add field output data to a Frame object by first creating a FieldOutput
object using the FieldOutput constructor and then adding data to the FieldOutput object using the addData method.
For example,

 // vector
 odb_SequenceString vectorCompLabels;
 vectorCompLabels.append("1");
 vectorCompLabels.append("2");
 vectorCompLabels.append("3");
 odb_SequenceInvariant vectorInvar;
 vectorInvar.append(odb_Enum::MAGNITUDE);
 odb_FieldOutput& vectorField = frameOne.FieldOutput("U",
 "displacement vector",
 odb_Enum::VECTOR,
 vectorCompLabels, vectorInvar);

 odb_SequenceInt labels2;
 labels2.append(3);
 labels2.append(5);
 odb_SequenceSequenceFloat vecDat;
 odb_SequenceFloat v1;
 v1.append(1.1); v1.append(1.2); v1.append(1.3);
 vecDat.append(v1);
 odb_SequenceFloat v2;
 v2.append(2.1); v2.append(2.2); v2.append(2.3);
 vecDat.append(v2);

 vectorField.addData(odb_Enum::NODAL, instanceA,
 labels2, vecDat);

For a full description of the FieldOutput constructor, see FieldOutput(...).

The type argument to the FieldOutput constructor describes the type of the data—tensor, vector, or scalar. The properties
of the different tensor types are:

Full tensor

A tensor that has six components and three principal values. Full three-dimensional rotation of the tensor is
possible.

Three-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Full three-dimensional rotation of
the tensor components is possible.

Three-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal values. Full
three-dimensional rotation of the tensor components is possible.

Abaqus Scripting User's Guide316

Writing field output data

Two-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Only in-plane rotation of the tensor
components is possible.

Two-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal values. Only
in-plane rotation of the tensor components is possible.

The valid components and invariants for the different data types are given in Table 1.

Table 1: Valid components and invariants for Abaqus data types.

InvariantsComponentsData type

SCALAR

MAGNITUDE1, 2, 3VECTOR

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL

11, 22, 33, 12, 13, 23TENSOR_3D_FULL

MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

11, 22, 12TENSOR_3D_SURFACE

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,

11, 22, 33, 12TENSOR_3D_PLANAR

MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

11, 22, 12TENSOR_2D_SURFACE

MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,

11, 22, 33, 12TENSOR_2D_PLANAR

MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

For example, the following statements add element data to the FieldOutput object:

 odb_SequenceString tensorCompLabels;
 tensorCompLabels.append("s11");
 tensorCompLabels.append("s22");
 tensorCompLabels.append("s33");
 tensorCompLabels.append("s12");
 tensorCompLabels.append("s13");
 tensorCompLabels.append("s23");
 odb_SequenceInvariant tensorInvar;
 tensorInvar.append(odb_Enum::MISES);
 tensorInvar.append(odb_Enum::TRESCA);
 tensorInvar.append(odb_Enum::MAX_PRINCIPAL);
 tensorInvar.append(odb_Enum::MID_PRINCIPAL);
 tensorInvar.append(odb_Enum::MIN_PRINCIPAL);

 odb_FieldOutput& tensorField = frameOne.FieldOutput("S",
 "stress tensor",
 odb_Enum::TENSOR_3D_FULL,

317Abaqus Scripting User's Guide

Writing field output data

 tensorCompLabels, tensorInvar);

 odb_SequenceInt tensorLabels;
 tensorLabels.append(9);
 tensorLabels.append(99);

 odb_SequenceSequenceFloat tensorDat;
 odb_SequenceFloat t1;
 t1.append(1.0); t1.append(2.0); t1.append(3.0);
 t1.append(0.0); t1.append(0.0); t1.append(0.0);
 odb_SequenceFloat t2;
 t2.append(120.0); t2.append(-55.0); t2.append(-85.0);
 t2.append(-55.0); t2.append(-75.0); t2.append(33.0);
 tensorDat.append(t1);
 tensorDat.append(t2);

 tensorField.addData(odb_Enum::CENTROID, instanceA, tensorLabels,
 tensorDat, topShell);

For a full description of the addData command, see addData(...).

As a convenience, localCoordSystem can be a single transform or a list of transforms. If localCoordSystem is a single
transform, it applies to all values. If localCoordSystem is a list of transforms, the number of items in the list must match
the number of data values.

Abaqus Scripting User's Guide318

Writing field output data

Default display properties

The previous examples show how you can use commands to set the default field variable and deformed field variable.
Abaqus/CAE uses the default field variable setting to determine the variable to display in a contour plot; for example,
stress. Similarly, the default deformed field variable determines the variable that distinguishes a deformed plot from
an undeformed plot. Typically, you will use displacement for the default deformed field variable; you cannot specify
an invariant or a component. The default variable settings apply for each frame in the step. For example, the following
statements use the deformation 'U' as the default setting for both field variable and deformed field variable settings
during a particular step:

 step1.setDefaultField(tensorField);
 step1.setDefaultDeformedField(vectorField);

You can set a different default field variable and deformed field variable for different steps.

319

Default display properties

Writing history output data

History output is output defined for a single point or for values calculated for a portion of the model as a whole, such
as energy. Depending on the type of output expected, the historyRegions repository contains data from one of the
following:

• a node

• an element, or a location in an element

• a region

Note: History data from an analysis cannot contain multiple points.

The output from all history requests that relate to a specified point is collected in one HistoryRegion object. You use
the HistoryPoint constructor to create the point. For example,

 odb_HistoryPoint hPoint1(instanceA.elements(0));

For a full description of the HistoryPoint command, see HistoryPoint(...).

You then use the HistoryRegion constructor to create a HistoryRegion object:

 odb_HistoryRegion& hr1 = step1.HistoryRegion("ElHist",
 "output at element", hPoint1);

For a full description of the HistoryRegion command, see HistoryRegion(...).

You use the HistoryOutput constructor to add variables to the HistoryRegion object.

 odb_HistoryOutput& ho1 = hr1.HistoryOutput("S11",
 "one component");

Each HistoryOutput object contains a sequence of (frameValue, value) sequences. The HistoryOutput object has a
method (addData) for adding data. Each data item is a sequence of (frameValue, value). In a time domain analysis
(domain=TIME) the sequence is (stepTime, value). In a frequency domain analysis (domain=FREQUENCY) the
sequence is (frequency, value). In a modal domain analysis (domain=MODAL) the sequence is (mode, value).

You add the data values as time and data tuples. The number of data items must correspond to the number of time
items. For example,

 ho1.addData(0.001, 0.1);

 // or using two sequences

 odb_SequenceFloat timeData;
 odb_SequenceFloat values;
 timeData.append(0.001);
 values.append(0.1);
 ho1.addData(timeData, values);

 // or using a sequence of sequences
 odb_SequenceSequenceFloat s11;
 odb_SequenceFloat value1;
 value1.append(0.001);

Abaqus Scripting User's Guide320

Writing history output data

 value1.append(0.1);
 s11.append(value1);
 ho1.addData(s11);

321Abaqus Scripting User's Guide

Writing history output data

Exception handling in an output database

Support for C++ exception handling is provided in the API to the output database.

For example, in your C++ program you may wish to customize the error message when an output database was not
opened successfully as follows:

odb_String invalidOdbName = "invalid.odb";
 try {
 odb_Odb& odb = openOdb(invalidOdbName);
 }
 catch(odb_BaseException& exc) {
 cerr << "odbBaseException caught\n";
 cerr << "Abaqus error message: " << exc.UserReport().CStr()
 << endl;
 cerr << "Customized error message here\n";
 }
 catch(...) {
 cerr << "Unknown Exception.\n";
 }

For more information, see BaseException object.

Abaqus Scripting User's Guide322

Exception handling in an output database

Computations with Abaqus results

This section discusses mathematical operations and calculations of Abaqus results.

In this section:

• Rules for the mathematical operations

• Valid mathematical operations

• Envelope calculations

• Transformation of results

323

Rules for the mathematical operations

Mathematical operations are supported for FieldOutput, FieldValue, and HistoryOutput objects. These operators allow
you to perform linear superposition of Abaqus results or to create more complex derived results from Abaqus results.

The following rules apply:

• The operations are performed on the components of a tensor or vector.

• The invariants are computed from the component values. For example, taking the absolute value of a tensor can
result in negative values of the pressure invariant.

• Operations between FieldOutput, FieldValue, and HistoryOutput objects are not supported.

• Multiplication and division are not supported between two vector objects nor between two tensor objects.

• The types in an expression must be compatible. For example,

- A vector cannot be added to a tensor.

- A three-dimensional surface tensor cannot be added to a three-dimensional planar tensor.

- INTEGRATION_POINT data cannot be added to ELEMENT_NODAL data.

• If the fields in the expression were obtained using the getSubset method, the same getSubset operations
must have been applied in the same order to obtain each field.

• Arguments to the trigonometric functions must be in radians.

• Operations on tensors are performed in the local coordinate system, if it is available. Otherwise the global system
is used. Abaqus assumes that the local coordinate systems are consistent for operations involving more than one
tensor.

• Operations between FieldValue objects associated with different locations in the model are allowed only if the data
types are the same. If the locations in the model differ, the FieldValue computed will not be associated with a
location. If the local coordinate systems of the FieldValue objects are not the same, the local coordinate systems
of both fieldValues will be disregarded and the fieldValue computed will have no local coordinate system.

The FieldOutput operations are significantly more efficient than the FieldValue operators. You can save the computed
FieldOutput objects with the following procedure:

• Create a new FieldOutput object in the output database.

• Use the addData method to add the new computed field objects to the new FieldOutput object.

For example,

 // Get fields from odb.
 odb_StepRepository& stepCon = odb.steps();
 odb_SequenceFrame& frameCon1 =
 stepCon["Step-1"].frames();
 odb_FieldOutputRepository& fieldCon1 =
 frameCon1.get(1).fieldOutputs();
 odb_SequenceFrame& frameCon2 = stepCon["Step-2"].frames();
 odb_FieldOutputRepository& fieldCon2 =
 frameCon2.get(1).fieldOutputs();
 odb_FieldOutput& field1 = fieldCon1["U"];
 odb_FieldOutput& field2 = fieldCon2["U"];

 // Compute new field.

 odb_FieldOutput deltaDisp = field2 - field1;

Abaqus Scripting User's Guide324

Rules for the mathematical operations

 // Save new field.

 odb_Step& newStep = odb.Step("user", "user defined results",
 odb_Enum::TIME,1.0);
 odb_Frame newFrame = newStep.Frame(0, 0.0);
 odb_FieldOutput& newField = newFrame.FieldOutput("U",
 "delta displacements",
 odb_Enum::VECTOR);
 newField.addData(deltaDisp);

325Abaqus Scripting User's Guide

Rules for the mathematical operations

Valid mathematical operations

Table 1 describes the abbreviations that are used in mathematical operations.

Table 1: Abbreviations.

Allowable valuesAbbreviation

FieldOutput objects, FieldValue objects, HistoryVariable objects, or floating point numbersall

floating point numbersfloat

FieldOutput objectsFO

FieldValue objectsFV

HistoryOutput objectsHO

Table 2 shows the valid operations on FieldOutput objects.

Table 2: Valid operations.

Return valueOperationSymbol

alladditionall + float

FOFO + FO

FVFV + FV

HOHO + HO

allunary negation-all

allsubtractionall - float

FOFO - FO

FVFV - FV

FOmultiplicationFO * FO (only if FO is a scalar)

allall * float

FOdivisionFO / FO (only if FO is a scalar)

allall / float

allabsolute valueabs(all)

allarccosineacos(all)

allarcsineasin(all)

allarctangentatan(all)

allcosinecos(all)

allconvert degrees to radiansdegreeToRadian (all)

allnatural exponentexp(all)

allbase 10 exponentexp10(all)

allnatural logarithmlog(all)

allbase 10 logarithmlog10(all)

allraise to a powerfloat ** float

FOpower(FO, float)

Abaqus Scripting User's Guide326

Valid mathematical operations

Return valueOperationSymbol

FVpower(FV, float)

HOpower(HO, float)

allconvert radian to degreeradianToDegree (all)

allsinesin(all)

allsquare rootsqrt(all)

alltangenttan(all)

FOmagnitude of the complex field outputcomplexMagnitude(FO)

FOphase of the complex field outputcomplexPhase(FO)

FOreal part of the complex field outputcomplexReal(FO)

FOimaginary part of the complex field outputcomplexImag(FO)

327Abaqus Scripting User's Guide

Valid mathematical operations

Envelope calculations

You use envelope calculations to retrieve the extreme value for an output variable over a number of fields. Envelope
calculations are especially useful for retrieving the extreme values over a number of load cases.

The following operators consider a list of fields and perform the envelope calculation:

odb_SequenceFieldOutput flds =
 maxEnvelope(odb_SequenceFieldOutput& fields);
odb_SequenceFieldOutput flds =
 minEnvelope(odb_SequenceFieldOutput& fields);

odb_SequenceFieldOutput flds =
 maxEnvelope(odb_SequenceFieldOutput& fields,
 odb_Enum::odb_InvariantEnum invariant);
odb_SequenceFieldOutput flds =
 minEnvelope(odb_SequenceFieldOutput& fields,
 odb_Enum::odb_InvariantEnum invariant);

odb_SequenceFieldOutput flds =
 maxEnvelope(odb_SequenceFieldOutput& fields,
 const odb_String& componentLabel);
odb_SequenceFieldOutput flds =
 minEnvelope(odb_SequenceFieldOutput& fields,
 const odb_String& componentLabel);

The envelope commands return two FieldOutput objects.

• The first object contains the requested extreme values.

• The second object contains the indices of the fields for which the extreme values were found. The indices derive
from the order in which you supplied the fields to the command.

The optional invariant argument is a odb_Enum::odb_DataTypeEnum specifying the invariant to be used when
comparing vectors or tensors. The optional componentLabel argument is anodb_String specifying the component of
the vector or tensor to be used for selecting the extreme value.

The following rules apply to envelope calculations:

• Abaqus compares the values using scalar data. If you are looking for the extreme value of a vector or a tensor, you
must supply an invariant or a component label for the selection of the extreme value. For example, for vectors you
can supply the MAGNITUDE invariant and for tensors you can supply the MISES invariant.

• The fields being compared must be similar. For example,

- VECTOR and TENSOR_3D_FULL fields cannot appear in the same list.

- The output region of all the fields must be the same. All the fields must apply to the whole model, or all the
fields must apply to the same set.

Abaqus Scripting User's Guide328

Envelope calculations

Transformation of results

Transformations of vector and tensor fields are supported for rectangular, cylindrical, and spherical coordinate systems.
The coordinate systems can be fixed or model based. Model-based coordinate systems refer to nodes for position and
orientation. Abaqus uses the coordinates of the deformed state to determine a systems origin and orientation for
model-based coordinate systems. Transformations that use a model-based coordinate system can account for large
displacements of both the coordinate system and the structure.

The steps required to transform results are:

• Create the coordinate system.

• Retrieve the field from the database.

• Use the fieldOutput.getTransformedField method to obtain a new field with the results in the specified
coordinate system.

• For large displacement of the structure and coordinate system, you must also retrieve the displacement field at the
frame. You must compute this displacement field for the whole model to ensure that the required displacement
information is available.

The following rules apply to the transformation of results:

• Beams, truss, and axisymmetric shell element results will not be transformed.

• The component directions 1, 2, and 3 of the transformed results will correspond to the system directions X, Y, and

Z for rectangular coordinate systems; R, , and Z for cylindrical coordinate systems; and R, , and for spherical
coordinate systems.

Note:

Stress results for three-dimensional continuum elements transformed into a cylindrical system would have
the hoop stress in S22, which is consistent with the coordinate system axis but inconsistent with the stress
state for axisymmetric elements having hoop stress in S33.

• When you are transforming a tensor, the location or integration point always takes into account the deformation.
The location of the coordinate system depends on the model, as follows:

- If the system is fixed, the coordinate system is fixed.

- If the system is model based, you must supply a displacement field that determines the instantaneous location
and orientation of the coordinate system.

• Abaqus will perform transformations of tensor results for shells, membranes, and planar elements as rotations of
results about the element normal at the element result location. The element normal is the normal computed for the
frame associated with the field by Abaqus, and you cannot redefine the normal. Abaqus defines the location of the
results location from the nodal locations. You specify optional arguments if you want to use the deformed nodal
locations to transform results. For rectangular, cylindrical, and spherical coordinate systems the second component
direction for the transformed results will be determined by one of the following:

- The Y-axis in a rectangular coordinate system.

- The -axis in a cylindrical coordinate system.

- The -axis in a spherical coordinate system.

- A user-specified datum axis projected onto the element plane.

If the coordinate system used for projection and the element normal have an angle less than the specified tolerance
(the default is 30°), Abaqus will use the next axis and generate a warning.

329

Transformation of results

Improving the efficiency of your scripts

If you are accessing large amounts of data from an output database, you should be aware of potential inefficiencies
in your program and techniques that will help to speed up your scripts.

In this section:

• Creating objects to hold loop counters

• Creating objects to hold temporary variables

• Using references to objects

Abaqus Scripting User's Guide330

Creating objects to hold loop counters

A program can spend a large proportion of its computation time executing statements inside loops. As a result, you
can make your scripts more efficient if you consider how Abaqus computes the next value of a loop counter each time
the loop is executed. If possible, you should create an integer or a sequence object to hold the value of a loop counter.
If you use a value derived from an Abaqus object, the time taken to calculate the next value can slow your program
significantly.

The following example uses the number of nodes in a part instance to determine the range of a loop counter:

 const odb_SequenceNode& nodeSequence = myInstance.nodes();
 for (int i=0; i < nodeSequence.size() ; i++){
 const odb_Node& myNode = nodeSequence[i];
 nodeLabel = myNode.label();
 }

You can make the program more efficient if you create an object to hold the value of the number of nodes.

 const odb_SequenceNode& nodeSequence = myInstance.nodes();
 int numNodes = nodeSequence.size();
 for (int i=0; i < numNodes; i++){
 const odb_Node& myNode = nodeSequence[i];
 nodeLabel = myNode.label();
 }

You can use this technique only if the maximum value of the loop counter remains fixed for the duration of the loop.

331

Creating objects to hold loop counters

Creating objects to hold temporary variables

To improve the efficiency of scripts that access an output database, you should create objects that will be used to hold
temporary variables that are accessed multiple times while the program is executing. For example, if the program
accesses the temporary variable while inside a loop that is executed many times, creating an object to hold the variable
will speed up your program significantly.

The following example examines the von Mises stress in each element during a particular frame of field output. If the
stress is greater than a certain maximum value, the program prints the strain components for the element.

 odb_FieldOutputRepository& fieldRep = frame1.fieldOutputs();
 odb_FieldOutput& stressField = fieldRep.get("S");
 odb_FieldOutput& strainField = fieldRep.get("LE");
 const odb_SequenceFieldValue& seqStressVal =
 stressField.values();
 int numFV = seqStressVal.size();
 int strainComp = 0;
 for (int loc=0; loc < numFV; loc++) {
 const odb_FieldValue stressVal = seqStressVal[loc];
 if (stressVal.mises() > stressCap) {
 cout << "Element label = " << stressVal.elementLabel()
 << endl;
 cout << "Integration Point = "
 << stressVal.integrationPoint() << endl;
 const odb_SequenceFieldValue& seqStrainVal =
 strainField.values();
 const odb_FieldValue strainVal = seqStrainVal[loc];
 const float* const data = strainVal.data(strainComp);
 cout << " LE : ";
 for (int comp=0; comp < strainComp; comp++)
 cout << data[comp];
 cout << endl;
 }
 }

In this example every time the script calls the strainField.values method, Abaqus must reconstruct the sequence
of FieldValue objects. This reconstruction could result in a significant performance degradation, particularly for a large
model.

A slight change in the program greatly improves its performance, as shown in the following example:

 odb_FieldOutputRepository& fieldRep =
 frame1.fieldOutputs();
 odb_FieldOutput& stressField = fieldRep.get("S");
 odb_FieldOutput& strainField = fieldRep.get("LE");
 const odb_SequenceFieldValue& seqStressVal =
 stressField.values();
 const odb_SequenceFieldValue& seqStrainVal =
 strainField.values();
 int numFV = seqStressVal.size();
 int strainComp = 0;
 for (int loc=0; loc < numFV; loc++) {
 const odb_FieldValue stressVal = seqStressVal[loc];
 if (stressVal.mises() > stressCap) {
 cout << "Element label = " << stressVal.elementLabel()
 << endl;
 cout << "Integration Point = "
 << stressVal.integrationPoint() << endl;

Abaqus Scripting User's Guide332

Creating objects to hold temporary variables

 const odb_FieldValue strainVal = seqStrainVal[loc];
 const float* data = strainVal.data(strainComp);
 cout << " LE : ";
 for (int comp = 0; comp < strainComp; comp++)
 cout << data[comp];
 cout << endl;
 }
 }
 }

Similarly, if you expect to retrieve more than one frame from an output database, you should create a temporary variable
that holds the entire frame repository. You can then provide the logic to retrieve the desired frames from the repository
and avoid recreating the repository each time. For example, executing the following statements could be very slow:

 int numFrames = step1.frames().size();
 for (int n=0; n < numFrames; n++)
 odb_Frame& frame = step1.frames()[n];

Creating a temporary variable to hold the frame repository provides the same functionality and speeds up the process:

 odb_SequenceFrame& frameRepository = step1.frames();
 int numFrames = frameRepository.size();
 for (int n=0; n < numFrames; n++)
 odb_Frame& frame = frameRepository[n];

Such a potential loss of performance will not be a problem when accessing a load case frame. Accessing a load case
frame does not result in the creation of a frame repository and, thus, does not suffer from a corresponding loss of
performance.

333Abaqus Scripting User's Guide

Creating objects to hold temporary variables

Using references to objects

Many functions return a reference to an object rather than an object. Returning a reference is much more efficient
because it avoids unnecessary memory operations. To maintain the efficiency of references, you should use the reference
itself. You should not assign the reference to a new object, since assigning the reference to a new object creates a copy
of the object that is denoted by the reference and invokes potentially expensive copy constructors. For example,

 odb_Instance instance = odb.rootAssembly().instances()
 ["PART-1-1"];
 const odb_SequenceNode nodeSequence = myInstance.nodes();

In the above case a copy of the nodeSequence object has to be created in memory.

Many of the methods in the Abaqus Scripting Interface that provide access to an output database return a reference to
an object rather than the object itself. It is much more efficient to modify the previous example to specify the returned
type to be a reference:

 odb_Instance& instance = odb.rootAssembly().instances()
 ["PART-1-1"];
 const odb_SequenceNode& nodeSequence = myInstance.nodes();

In this case no new object is created and no copy constructors are called.

Abaqus Scripting User's Guide334

Using references to objects

Example programs that access data from an output database

The following examples illustrate how you use the output database commands to access data from an output
database.

In this section:

• Finding the maximum value of von Mises stress

• Creating an output database

• Reading data from an output database

• Decreasing the amount of data in an output database by retaining data at specific frames

• Stress range for multiple load cases

• A C++ version of FELBOW

335

Finding the maximum value of von Mises stress

This example illustrates how you can iterate through an output database and search for the maximum value of von
Mises stress. The program opens the output database specified by the first argument on the command line and iterates
through the following:

• Each step.

• Each frame in each step.

• Each value of von Mises stress in each frame.

In addition, you can supply an optional assembly element set argument from the command line, in which case the
program searches only the element set for the maximum value of von Mises stress.

The following illustrates how you can run the example program from the system prompt. The program will search the
element set ALL ELEMENTS in the viewer tutorial output database for the maximum value of von Mises stress:

abaqus odbMaxMises.exe -odb viewer_tutorial.odb
 -elset “ ALL ELEMENTS”

Note:

If a command line argument is a String that contains spaces, some systems will interpret the String correctly
only if it is enclosed in double quotation marks. For example, “ ALL ELEMENTS”.

You can also run the example with only the -help parameter for a summary of the usage.

Use the following commands to retrieve the example program and the viewer tutorial output database:

abaqus fetch job=odbMaxMises.C
abaqus fetch job=viewer_tutorial

/***
odbMaxMises.C
Code to determine the location and value of the maximum
von-mises stress in an output database.
Usage: abaqus odbMaxMises -odb odbName -elset(optional)
 elsetName
Requirements:
1. -odb : Name of the output database.
2. -elset : Name of the assembly level element set.
 Search will be done only for element belonging
 to this set. If this parameter is not provided,
 search will be performed over the entire model.
3. -help : Print usage
**/
#if (defined(HP) && (! defined(HKS_HPUXI)))
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif

#include <odb_API.h>
#include <sys/stat.h>
/*

utility functions

*/
bool fileExists(const odb_String &string);

Abaqus Scripting User's Guide336

Finding the maximum value of von Mises stress

void rightTrim(odb_String &string,const char* char_set);
void printExecutionSummary();
/***/

int ABQmain(int argc, char **argv)
{
 odb_String odbPath;
 bool ifOdbName = false;
 odb_String elsetName;
 bool ifElset = false;
 odb_Set myElset;
 odb_String region = "over the entire model";
 char msg[256];
 char *abaCmd = argv[0];

 for (int arg = 0; arg<argc; arg++)
 {
 if (strncmp(argv[arg],"-o**",2) == 0)
 {
 arg++;
 odbPath = argv[arg];
 rightTrim(odbPath,".odb");
 if (!fileExists(odbPath))
 {
 cerr << "**ERROR** output database " << odbPath.CStr()
 << " does not exist\n" << endl;
 exit(1);
 }
 ifOdbName = true;
 }
 else if (strncmp(argv[arg],"-e**",2)== 0)
 {
 arg++;
 elsetName = argv[arg];
 ifElset = true;
 }
 else if (strncmp(argv[arg],"-h**",2)== 0)
 {
 printExecutionSummary();
 exit(0);
 }
 }
 if (!ifOdbName)
 {
 cerr << "**ERROR** output database name is not provided\n";
 printExecutionSummary();
 exit(1);
 }
 // Open the output database
 odb_Odb& myOdb = openOdb(odbPath);
 odb_Assembly& myAssembly = myOdb.rootAssembly();
 if (ifElset)
 {
 if (myAssembly.elementSets().isMember(elsetName))
 {
 myElset = myAssembly.elementSets()[elsetName];
 region = " in the element set : " + elsetName;
 }
 else
 {

337Abaqus Scripting User's Guide

Finding the maximum value of von Mises stress

 cerr<<"An assembly level elset " << elsetName.CStr()
 << " does not exist in the output database :"
 << myOdb.name().CStr() << endl;
 myOdb.close();
 exit(0);
 }
 }
 // Initialize maximum values.
 float maxMises = -0.1;
 int numFV = 0;
 int maxElem = 0;
 odb_String maxStep = "__None__";
 int maxFrame = -1;
 static const odb_String Stress = "S";
 bool isStressPresent = false;
 int numBD = 0,numElems = 0, numIP = 0, numComp = 0, position = 0;
 // Iterate over all available steps
 odb_StepRepository& sRep1 = myOdb.steps();
 odb_StepRepositoryIT sIter1 (sRep1);
 for (sIter1.first(); !sIter1.isDone(); sIter1.next())
 {
 odb_Step& step = sRep1[sIter1.currentKey()];
 cout<<"Processing Step: "<<step.name().CStr()<<endl;
 odb_SequenceFrame& frameSequence = step.frames();
 int numFrames = frameSequence.size();
 for (int f = 0; f<numFrames; f++)
 {
 odb_Frame& frame = frameSequence[f];
 odb_FieldOutputRepository& fieldRep = frame.fieldOutputs();
 if (fieldRep.isMember(Stress))
 {
 isStressPresent = true;
 odb_FieldOutput field = fieldRep.get(Stress);
 if (ifElset)
 field = field.getSubset(myElset);
 const odb_SequenceFieldBulkData& seqVal =
 field.bulkDataBlocks();
 int numBlocks = seqVal.size();
 for (int iblock=0; iblock<numBlocks; iblock++)
 {
 const odb_FieldBulkData& bulkData = seqVal[iblock];
 numBD = bulkData.length();
 numElems = bulkData.numberOfElements();
 numIP = numBD/numElems;
 numComp = bulkData.width();
 float* mises = bulkData.mises();
 int* elementLabels = bulkData.elementLabels();
 int* integrationPoints = bulkData.integrationPoints();
 for (int elem=0; elem<numElems; elem++)
 {
 for (int ip=0; ip<numIP; ip++)
 {
 position = elem*numIP+ip;
 float misesData = mises[position];
 if (misesData > maxMises)
 {
 maxMises = misesData;
 maxElem = elementLabels[elem];
 maxStep = step.name();
 maxFrame = frame.incrementNumber();
 }

Abaqus Scripting User's Guide338

Finding the maximum value of von Mises stress

 }
 }
 }

 }
 }
 }
 if (isStressPresent)
 {
 cout << "Maximum von Mises stress " << region.CStr()
 << " is " << maxMises << " in element "
 << maxElem << endl;
 cout << "Location: frame # " << maxFrame << " step: "
 << maxStep.CStr() << endl;
 }
 else
 {
 cout << " Stress output is not available in the "
 << "output database : " << myOdb.name().CStr() << endl;
 }
 // close the output database before exiting the program
 myOdb.close();
 return(0);
}

bool fileExists(const odb_String &string)
{
 bool exists = false;
 struct stat buf;
 if (stat(string.CStr(),&buf)==0)
 exists = true;
 return exists;
}

void rightTrim(odb_String &string,const char* char_set)
{
 int length = string.Length();
 if (string.Find(char_set)==length)
 string.append(odb_String(char_set));
}

void printExecutionSummary()
{
 cout << " Code to determine the location and value of the\n"
 << " maximum von-mises stress in an output database.\n"
 << " Usage: abaqus odbMaxMises -odb odbName \n"
 << " -elset(optional), -elsetName\n"
 << " Requirements:\n"
 << " 1. -odb : Name of the output database.\n"
 << " 2. -elset : Name of the assembly level element set.\n"
 << " Search will be done only for element \n"
 << " belonging to this set.\n"
 << " If this parameter is not provided, search \n"
 << " will be performed over the entire model.\n"
 << " 3. -help : Print usage\n";
}

339Abaqus Scripting User's Guide

Finding the maximum value of von Mises stress

Creating an output database

The following example illustrates how you can use the Abaqus C++ API commands to do the following:

1. Create a new output database.

2. Add model data.

3. Add field data.

4. Add history data.

5. Read history data.

6. Save the output database.

Use the following command to retrieve the example program:

abaqus fetch job=odbWrite

//
// Code to create an output database and add model,
// field, and history data. The code also reads
// history data, performs an operation on the data, and writes
// the result back to the output database.
//
// SECTION: System includes
//
#include <math.h>
//
// Begin local includes
//
#include <odb_API.h>
#include <odb_MaterialTypes.h>
#include <odb_SectionTypes.h>
//
// End local includes
//

int ABQmain(int argc, char **argv)
{
 // Create an ODB (which also creates the rootAssembly).
 int n;
 odb_String name("simpleModel");
 odb_String analysisTitle("ODB created with C++ ODB API");
 odb_String description("example illustrating C++ ODB API");
 odb_String path("odbWriteC.odb");
 odb_Odb& odb = Odb(name,
 analysisTitle,
 description,
 path);

 // Model data:
 // Set up the section categories.
 odb_String sectionCategoryName("S5");
 odb_String sectionCategoryDescription("Five-Layered Shell");
 odb_SectionCategory& sCat =
 odb.SectionCategory(sectionCategoryName,
 sectionCategoryDescription);
 int sectionPointNumber = 1;
 odb_String sectionPointDescription("Bottom");
 odb_SectionPoint spBot =
 sCat.SectionPoint(sectionPointNumber,

Abaqus Scripting User's Guide340

Creating an output database

 sectionPointDescription);
 sectionPointNumber = 3;
 sectionPointDescription = "Middle";
 odb_SectionPoint spMid =
 sCat.SectionPoint(sectionPointNumber,
 sectionPointDescription);
 sectionPointNumber = 5;
 sectionPointDescription = "Top";
 odb_SectionPoint spTop =
 sCat.SectionPoint(sectionPointNumber,
 sectionPointDescription);

 // Create few materials
 odb_MaterialApi materialApi;
 odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);
 odb_String materialName("Elastic Material");
 odb_Material& material_1 =
 materialApi.Material(materialName);
 odb_SequenceSequenceDouble myTable;
 odb_SequenceDouble myData;
 myData.append(12000.00);//youngs modulus
 myData.append(0.3);//poissons ratio
 myTable.append(myData);
 odb_String type("ISOTROPIC");
 bool noCompression = false;
 bool noTension = false;
 bool temperatureDependency = false;
 int dependencies = 0;
 odb_String moduli("LONG_TERM");
 material_1.Elastic(myTable,
 type,
 noCompression,
 noTension,
 temperatureDependency,
 dependencies,
 moduli);

 //create few sections
 odb_SectionApi sectionApi;
 odb.extendApi(odb_Enum::odb_SECTION,
 sectionApi);
 odb_String sectionName("Homogeneous Shell Section");
 double thickness = 2.0;
 odb_HomogeneousShellSection& section_1 =
 sectionApi.HomogeneousShellSection(sectionName,thickness,materialName);

 // Create a 2-element shell model,
 //4 integration points, 5 section points.

 odb_Part& part1 = odb.Part("part-1",
 odb_Enum::THREE_D,
 odb_Enum::DEFORMABLE_BODY);

 odb_SequenceInt nodeLabels;
 for(n=1; n<7; n++)
 nodeLabels.append(n);

 double c[6][3] = { {1, 0, 0.0},
 {2, 0, 0.0},
 {2, 1, 0.1},

341Abaqus Scripting User's Guide

Creating an output database

 {1, 1, 0.1},
 {2, -1, -0.1},
 {1, -1, -0.1} };
 odb_SequenceSequenceFloat nodeCoor;
 for(n=0; n<nodeLabels.size(); n++) {
 odb_SequenceFloat loc;
 for(int i=0; i<3; i++)
 loc.append(c[n][i]);
 nodeCoor.append(loc);
 }
 odb_String nodeSetName("nset-1");
 part1.addNodes(nodeLabels,
 nodeCoor,
 nodeSetName);

 odb_SequenceInt elLabels;
 elLabels.append(1);
 elLabels.append(2);
 odb_SequenceSequenceInt connect;
 const int numNodePerEl = 4;
 int conn[2][numNodePerEl] = { {1, 2, 3, 4},
 {6, 5, 2, 1} };
 for(int e=0; e<elLabels.size(); e++) {
 odb_SequenceInt l;
 for(int i=0; i<numNodePerEl; i++)
 l.append(conn[e][i]);
 connect.append(l);
 }
 odb_String elType("S4");
 odb_String elsetName("eset-1");
 part1.addElements(elLabels,
 connect,
 elType,
 elsetName,
 sCat);

 // Instance the part.
 odb_String partInstanceName("part-1-1");
 odb_Instance& instance1 =
 odb.rootAssembly().Instance(partInstanceName, part1);
 // create instance level sets for section assignment
 elsetName = "Material 1";
 odb_Set& elset_1 = instance1.ElementSet(elsetName,
 elLabels);
 // section assignment on instance
 instance1.assignSection(elset_1,section_1);
 // Field data:
 // Create a step and a frame.
 odb_String stepName("step-1");
 odb_String stepDescription("first analysis step");
 odb_Step& step1 = odb.Step(stepName,
 stepDescription,
 odb_Enum::TIME,
 1.0);
 int incrementNumber = 1;
 float analysisTime = 0.1;
 odb_String frameDescription("results frame for time");
 frameDescription.append(analysisTime);
 odb_Frame frame1 = step1.Frame(incrementNumber,
 analysisTime,
 frameDescription);

Abaqus Scripting User's Guide342

Creating an output database

 // Write nodal displacements.
 odb_String fieldName("U");
 odb_String fieldDescription("Displacements");
 odb_FieldOutput& uField =
 frame1.FieldOutput(fieldName,
 fieldDescription,
 odb_Enum::VECTOR);

 odb_SequenceSequenceFloat dispData;
 odb_SequenceFloat dispData1[6];
 // create some displacement values
 for(n=0; n<6; n++) {
 for(int m=1; m<4; m++)
 dispData1[n].append(n*3+m);
 dispData.append(dispData1[n]);
 }
 uField.addData(odb_Enum::NODAL,
 instance1,
 nodeLabels,
 dispData);

 // Make this the default deformed field for visualization.

 step1.setDefaultDeformedField(uField);

 // Write stress tensors (output only available at
 // top/bottom section points)
 // The element defined above (S4) has 4 integration points.
 // Hence, there are 4 stress tensors per element.
 // Each Field constructor refers to only one layer of
 // section points.

 odb_SequenceSequenceFloat topData;
 odb_SequenceFloat topData1;
 for(n=1; n<5; n++)
 topData1.append(n);

 for(n=0; n<8; n++)
 topData.append(topData1);

 odb_SequenceSequenceFloat bottomData;
 odb_SequenceFloat bottomData1;
 for(n=1; n<5; n++)
 bottomData1.append(n);

 for(n=0; n<8; n++)
 bottomData.append(bottomData1);

 odb_SequenceSequenceFloat transform;

 //transform = ((1.,0.,0.), (0.,1.,0.), (0.,0.,1.))

 for(n=1; n<4; n++){
 odb_SequenceFloat transform1;
 for(int m=1; m<4; m++) {
 if(m==n)transform1.append(1);
 else transform1.append(0);
 }
 transform.append(transform1);
 }

343Abaqus Scripting User's Guide

Creating an output database

 odb_SequenceString componentLabels;
 componentLabels.append("S11");
 componentLabels.append("S22");
 componentLabels.append("S33");
 componentLabels.append("S12");

 odb_SequenceInvariant validInvariants;
 validInvariants.append(odb_Enum::MISES);
 fieldName = "S";
 fieldDescription = "Stress";
 odb_FieldOutput& sField =
 frame1.FieldOutput(fieldName,
 fieldDescription,
 odb_Enum::TENSOR_3D_PLANAR,
 componentLabels,
 validInvariants);

 sField.addData(odb_Enum::INTEGRATION_POINT,
 instance1,
 elLabels,
 topData,
 spTop,
 transform);

 sField.addData(odb_Enum::INTEGRATION_POINT,
 instance1,
 elLabels,
 bottomData,
 spBot,
 transform);

 // For this step, make this the default
 // field for visualization.

 step1.setDefaultField(sField);

 // History data:
 // Create a HistoryRegion for a specific point.
 odb_HistoryPoint hPoint1(instance1.getNodeFromLabel(1));
 odb_String historyRegionName("historyNode0");
 odb_String historyRegionDescription(
 "Displacement and reaction force");
 odb_HistoryRegion& hRegionStep1 =
 step1.HistoryRegion(historyRegionName,
 historyRegionDescription,
 hPoint1);

 // Create variables for this history output in step1.

 odb_String historyOutputName("U1");
 odb_String historyOutputDescription("Displacement");
 odb_HistoryOutput& hOutputStep1U1 =
 hRegionStep1.HistoryOutput(historyOutputName,
 historyOutputDescription,
 odb_Enum::SCALAR);
 historyOutputName = "RF1";
 historyOutputDescription = "Reaction Force";
 odb_HistoryOutput& hOutputStep1Rf1 =
 hRegionStep1.HistoryOutput(historyOutputName,
 historyOutputDescription,

Abaqus Scripting User's Guide344

Creating an output database

 odb_Enum::SCALAR);
 // Add history data for step1.

 hOutputStep1U1.addData(0.0, 0.0);
 hOutputStep1Rf1.addData(0.0,0.0);
 hOutputStep1U1.addData(0.1, 0.1);
 hOutputStep1Rf1.addData(0.1,0.1);
 hOutputStep1U1.addData(0.3, 0.3);
 hOutputStep1Rf1.addData(0.3,0.3);
 hOutputStep1U1.addData(1.0, 0.5);
 hOutputStep1Rf1.addData(1.0,0.5);

 // Create another step for history data.
 stepName = "step-2";
 stepDescription = "second analysis step";
 odb_Step& step2 = odb.Step(stepName,
 stepDescription,
 odb_Enum::TIME,
 1.0);

 // Create new history region

 odb_HistoryPoint hPoint2(instance1.getNodeFromLabel(1));

 odb_HistoryRegion& hRegionStep2 =
 step2.HistoryRegion(historyRegionName,
 historyRegionDescription,
 hPoint2);

 //Create new history output
 historyOutputName = "U1";
 historyOutputDescription = "Displacement";
 odb_HistoryOutput& hOutputStep2U1 =
 hRegionStep2.HistoryOutput(historyOutputName,
 historyOutputDescription,
 odb_Enum::SCALAR);

 historyOutputName = "RF1";
 historyOutputDescription = "Reaction Force";
 odb_HistoryOutput& hOutputStep2Rf1 =
 hRegionStep2.HistoryOutput(historyOutputName,
 historyOutputDescription,
 odb_Enum::SCALAR);

 // Add history data for the second step.

 hOutputStep2U1.addData(1.2, 0.8);
 hOutputStep2Rf1.addData(1.2,0.9);
 hOutputStep2U1.addData(1.9, 0.9);
 hOutputStep2Rf1.addData(1.9,1.1);
 hOutputStep2U1.addData(3.0, 1.3);
 hOutputStep2Rf1.addData(3.0,1.3);
 hOutputStep2U1.addData(4.0, 1.5);
 hOutputStep2Rf1.addData(4.0,1.5);

 // Square the history data U, and store as new history output
 historyOutputName = "squareU1";
 historyOutputDescription = "Square of displacements";
 odb_HistoryOutput& hOutputStep1sumU1 =

345Abaqus Scripting User's Guide

Creating an output database

 hRegionStep1.HistoryOutput(historyOutputName,
 historyOutputDescription,
 odb_Enum::SCALAR);
 historyOutputName = "squareU2";
 odb_HistoryOutput& hOutputStep2sumU1 =
 hRegionStep2.HistoryOutput(historyOutputName,
 historyOutputDescription,
 odb_Enum::SCALAR);

 // Get XY Data from the two steps.

 odb_HistoryOutputRepository& historyOutputs1 =
 hRegionStep1.historyOutputs();
 historyOutputName = "U1";
 odb_HistoryOutput& u1FromStep1 =
 historyOutputs1[historyOutputName];

 odb_HistoryOutputRepository& historyOutputs2 =
 hRegionStep2.historyOutputs();
 odb_HistoryOutput& u1FromStep2 =
 historyOutputs2[historyOutputName];

 odb_SequenceSequenceFloat hdata1 = u1FromStep1.data();
 odb_SequenceSequenceFloat hdata2 = u1FromStep2.data();

 // Add the squared displacement to the two steps.

 for(n=0; n<hdata1.size(); n++){
 odb_SequenceFloat hdata11=hdata1.get(n);
 hOutputStep1sumU1.addData(hdata11.get(0),
 pow((double)hdata11.get(1),(int)2));
 }

 for(n=0; n<hdata2.size(); n++){
 odb_SequenceFloat hdata22=hdata2.get(n);
 hOutputStep2sumU1.addData(hdata22.get(0),
 pow((double)hdata22.get(1),(int)2));
 }

 // Save the results in the output database.
 // Use the Visualization module of Abaqus/CAE to
 // view the contents of the output database.

 odb.save();
 odb.close();
 return 0;
}

Abaqus Scripting User's Guide346

Creating an output database

Reading data from an output database

This example illustrates how you can print the content of an output database. The example opens the output database
specified on the command line and calls functions that print the following:

• Parts

• Part instances

• The root assembly

• Connectors

• Connector properties

• Datum coordinate systems

• Nodes

• Elements

• Sets

• Faces

• Sections

• Steps

• Frames

• Fields

• Field values

• Field bulk data

• Field locations

• History regions

• History output

• History points

Use the following command to retrieve the example program:

abaqus fetch job=odbDump

347

Reading data from an output database

Decreasing the amount of data in an output database by retaining data at specific frames

This example illustrates how you can decrease the size of an output database. In most cases a large output database
results from excessive field output being generated over a large number of frames. The Abaqus C++ API does not
support the deletion of data from an output database; however, you can use this example program to copy data from
select frames into a second output database created by a datacheck analysis that has identical model data. The original
analysis and the datacheck analysis must be run using the same number of processors because the internal organization
of data may differ based on the number of processors. The program uses addData to copy data at specified frames
from the large output database into the new output database. The addData method works only when the model data
in the two output databases are identical. For more information, see addData(...).

When you run the program, the following command line parameters are required:

-smallOdb odbName

The name of the output database created with a datacheck analysis of the original problem. For more information,
see Abaqus/Standard and Abaqus/Explicit Execution.

-largeOdb odbName

The name of the large output database generated by the original problem. The program copies selected frames
from this output database.

The following parameters are optional:

-history

Copy all history output from all available steps in the large output database. By default, history output is not
copied.

Warning:

Copying large amounts of history data can result in the program creating a very large output database.

-debug

Print a detailed report of all the operations performed during the running of the program. By default, no debug
information is generated.

Warning:

If you are extracting data from a large output database, the debug option can generate large amounts of
information.

You can also run the example with only the -help parameter for a summary of the usage.

The following is an example of how you can use this program in conjunction with the output database generated by
the problem described in Free ring under initial velocity: comparison of rate-independent and rate-dependent plasticity.
Use the following commands to retrieve the example program and the benchmark input file:

abaqus fetch job=odbFilter.C
abaqus fetch job=ringshell.inp

1. Run an analysis using the benchmark input file:

abaqus job=ringshell

Abaqus Scripting User's Guide348

Decreasing the amount of data in an output database by retaining data at specific frames

This creates an output database called ringshell.odb that contains 100 frames of data.

2. Run a datacheck analysis to obtain a new output database called ringshell_datacheck.odb that contains
the same model data as ringshell.odb:

abaqus job=ringshell_datacheck -input ringshell datacheck

3. Create the executable program:

abaqus make job=odbFilter.C

The program displays the number of frames available in each step. For each step you must specify the number of
increments between frames, which is the frequency at which the data will be copied to the new output database. Data
for the first and last increment in each step are always copied. For example, if a step has 100 frames, and you enter a
frame interval of 37, the program will copy data for frames 0, 37, 74, and 100.

The following statement will run the executable program and read data from the small output database containing only
model data and the large output database created by the benchmark example:

abaqus odbFilter -smallOdb ringshell_datacheck -largeOdb ringshell

The program prompts you for the increment between frames:

Results from ODB : ringshell.odb will be filtered & written
to ODB: ringshell_datacheck
By default only the first & last increment of a step will
be saved
For each step enter the increment between frames
for example : 3 => frames 0,3,6,..,lastframe will be saved
STEP Step-1 has 101 Frames
Enter Increment between frames

Enter 37 to define the increment between frames. The program then reads the data and displays the frames being
processed:

Processing frame # : 0
Processing frame # : 37
Processing frame # : 74
Processing frame # : 100
Filtering successfully completed

349Abaqus Scripting User's Guide

Decreasing the amount of data in an output database by retaining data at specific frames

Stress range for multiple load cases

This example illustrates how you can use the envelope operations to compute the stress range over a number of load
cases. The example program does the following:

• For each load case during a specified step, the program collects the S11 components of the stress tensor fields into
a list of scalar fields.

• Computes the maximum and minimum of the S11 stress component using the envelope calculations.

• Computes the stress range using the maximum and minimum values of the stress component.

• Creates a new frame in the step.

• Writes the computed stress range into a new FieldOutput object in the new frame.

Use the following command to retrieve the example program:

abaqus fetch job=stressRange

The fetch command also retrieves an input file that you can use to generate an output database that can be read by the
example program.

//
// Code to compute a stress range from
// all the load cases in a step.
//
// The stress range is saved to a frame with the
// description "Stress Range"

// System includes
#if (defined(HP) && (! defined(HKS_HPUXI)))
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif

// Begin Local Includes
#include <odb_API.h>
// End Local Includes

odb_FieldOutput computeStressRange(odb_Step& step);

int ABQmain(int argc, char **argv)
{
 if(argc < 3) {
 cerr << "Usage: abaqus stressRange.x odb_name"
 << "step_name"
 << endl;
 return 1;
 }

 odb_String odbName(argv[1]);
 odb_String stepName(argv[2]);
 cout << "Computing for odb \"" << odbName.CStr() << "\"";
 cout << " and step \"" << stepName.CStr() << "\"." << endl;

 // compute stress range and save to odb
 odb_Odb& odb = openOdb(odbName);
 odb_Step& step = odb.steps()[stepName];
 odb_FieldOutput range = computeStressRange(step);

Abaqus Scripting User's Guide350

Stress range for multiple load cases

 // Save the results in the output database.
 odb_Frame rangeFrame = step.Frame(0, 0, "Stress Range");
 rangeFrame.FieldOutput(range, "S11 Range");
 odb.save();
 odb.close();

 return 0;
}

odb_FieldOutput
computeStressRange(odb_Step& step)
{
 // collect stress fields for all load cases
 odb_SequenceFieldOutput sFields;
 odb_LoadCaseRepositoryIT iter(step.loadCases());
 for(iter.first(); !iter.isDone(); iter.next()) {
 odb_Frame frame = step.getFrame(iter.currentValue());
 odb_FieldOutput& stressField = frame.fieldOutputs()["S"];
 sFields.append(stressField.getScalarField("S11"));
 };

 // compute maximum and minimum envelopes
 odb_SequenceFieldOutput maxFields = maxEnvelope(sFields);
 odb_SequenceFieldOutput minFields = minEnvelope(sFields);

 // compute and return range
 return (maxFields.get(0) - minFields.get(0));
}

351Abaqus Scripting User's Guide

Stress range for multiple load cases

A C++ version of FELBOW

This example illustrates the use of a C++ program to read selected element integration point records from an output
database and to postprocess the elbow element results. The program creates X–Y data that can be plotted with the X–Y

plotting capability in Abaqus/CAE. The program performs the same function as the Fortran program described in
Creation of a data file to facilitate the postprocessing of elbow element results: FELBOW.

The program reads integration point data for elbow elements from an output database to visualize one of the following:

1. Variation of an output variable around the circumference of a given elbow element, or

2. Ovalization of a given elbow element.

The program creates either an ASCII file containing X–Y data or a new output database file that can be viewed using
Abaqus/CAE.

To use option 2, you must ensure that the integration point coordinates (COORD) are written to the output database.
For option 1 the X-data are data for the distance around the circumference of the elbow element, measured along the
middle surface, and the Y-data are data for the output variable. For option 2 the X–Y data are the current coordinates
of the middle-surface integration points around the circumference of the elbow element, projected to a local coordinate
system in the plane of the deformed cross-section. The origin of the local system coincides with the center of the
cross-section; the plane of the deformed cross-section is defined as the plane that contains the center of the cross-section.

You should specify the name of the output database during program execution. The program prompts for more
information, depending on the option that was chosen; this information includes the following:

• Your choice for storing results (ASCII file or a new output database)

• File name based on the above choice

• The postprocessing option (1 or 2)

• The part name

• The step name

• The frame number

• The element output variable (option 1 only)

• The component of the variable (option 1 only)

• The section point number (option 1 only)

• The element number or element set name

Before program execution, compile and link the C++ program using the abaqus make utility:

abaqus make job=felbow.C

After successful compilation, the program's object code is linked automatically with the Abaqus object codes stored
in the shared program library and interface library to build the executable program. Refer to Customizing the Abaqus

environment to see which compile and link commands are used for a particular computer.

Before executing the program, run an analysis that creates an output database file containing the appropriate output.
This analysis includes, for example, output for the elements and the integration point coordinates of the elements.
Execute the program using the following command:

abaqus felbow <filename.odb>

The program prompts for other information, such as the desired postprocessing option, part name, etc. The program
processes the data and produces a text file or a new output database file that contains the information required to
visualize the elbow element results.

Abaqus Scripting User's Guide352

A C++ version of FELBOW

Elastic-plastic collapse of a thin-walled elbow under in-plane bending and internal pressure contains several figures
that can be created with the aid of this program.

353Abaqus Scripting User's Guide

A C++ version of FELBOW

	Abaqus Scripting User's Guide
	Contents
	Trademarks and Legal Notices
	Abaqus Scripting User's Guide
	What's New
	About the Abaqus Scripting Interface
	Abaqus/CAE and the Abaqus Scripting Interface
	How does the Abaqus Scripting Interface interact with Abaqus/CAE?
	Simple examples
	Creating a part
	The example script
	How does the script work?

	Reading from an output database
	The example script
	How does the script work?

	Summary

	Using the Abaqus Scripting Interface
	Introduction to Python
	Python and Abaqus
	Python resources
	Using the Python interpreter
	Object-oriented basics
	The basics of Python
	Variable names and assignment
	Python data types
	Determining the type of a variable
	Sequences
	Sequence operations
	Python None
	Continuation lines and comments
	Printing variables using formatted output
	Control blocks

	Programming techniques
	Creating functions
	Using dictionaries
	Reading and writing from files
	Error handling
	Functions and modules
	Writing your own modules

	Further reading

	Using Python and the Abaqus Scripting Interface
	Executing scripts
	Abaqus Scripting Interface documentation style
	How the commands are ordered
	Access
	Path
	Arguments
	Return value

	Abaqus Scripting Interface data types
	SymbolicConstants
	Booleans
	Repositories

	Object-oriented programming and the Abaqus Scripting Interface
	The Abaqus Scripting Interface and methods
	The Abaqus Scripting Interface and members
	Object-oriented programming and the Abaqus Scripting Interface—a summary

	Error handling in the Abaqus Scripting Interface
	Standard Python exceptions
	Standard Abaqus Scripting Interface exceptions
	Additional Abaqus Scripting Interface exceptions
	Exception handling

	Extending the Abaqus Scripting Interface
	Storing custom data in the model database or in other objects
	Interaction with the GUI
	CommandRegister class
	Repositories
	Repository methods
	RepositorySupport
	Registered dictionaries
	Registered lists
	Registered tuples
	Session data
	Saving application data in a model database
	Checking a model database when it is opened

	Using the Abaqus Scripting Interface with Abaqus/CAE
	The Abaqus object model
	About the Abaqus object model
	Using tab completion to explore the object model
	The Model object model
	Using the object model
	Abstract base type
	Importing modules to extend the object model

	Copying, deleting, and renaming Abaqus Scripting Interface objects
	Creating a copy of an object
	More on copying objects
	Deleting objects
	Renaming objects

	Abaqus/CAE sequences
	Namespace
	Specifying what is displayed in the viewport
	Specifying a region
	Prompting the user for input
	Requesting a single input from the user
	Requesting multiple inputs from the user
	Requesting a warning reply from the user

	Interacting with Abaqus/Standard and Abaqus/Explicit
	Processing messages from Abaqus/Standard and Abaqus/Explicit
	Waiting for a job to complete
	An example of a callback function

	Using Abaqus Scripting Interface commands in your environment file

	The Abaqus Python Development Environment
	About the Abaqus Python development environment
	AbaqusPDE basics
	Starting the Abaqus Python development environment
	Managing files in the AbaqusPDE
	Editing files in the AbaqusPDE
	Selecting the settings for use with a file
	The message area and GUI command line interface

	Using the AbaqusPDE
	Creating .guiLog files
	Running a script
	Using the debugger
	Using breakpoints
	Using the AbaqusPDE with plug-ins
	Using the AbaqusPDE with custom applications

	Putting it all Together: Abaqus Scripting Interface Examples
	Reproducing the cantilever beam tutorial
	About the cantilever beam example
	Running the example
	The cantilever beam example script

	Generating a customized plot
	Opening the tutorial output database
	Opening an output database and displaying a contour plot
	Printing a contour plot at the end of each step

	Investigating the skew sensitivity of shell elements
	Creating the model to analyze
	Changing the skew angle
	Add the angular dimension
	Determine the indices of the dimension to modify and the vertices to move

	Using a script to perform a parametric study

	Editing display preferences and GUI settings

	Accessing an Output Database
	Using the Abaqus Scripting Interface to access an output database
	What do you need to access the output database?
	How the object model for the output database relates to commands
	Object model for the output database
	Model data
	Results data

	Executing a script that accesses an output database
	Reading from an output database
	The Abaqus/CAE Visualization module tutorial output database
	Making the Odb commands available
	Opening an output database
	Reading model data
	Reading results data
	Reading field output data
	Using regions to read a subset of field output data
	Reading history output data
	An example of reading node and element information from an output database
	An example of reading field data from an output database

	Writing to an output database
	Creating a new output database
	Writing model data
	Writing results data
	Writing field output data
	Default display properties
	Writing history output data

	Exception handling in an output database
	Computations with Abaqus results
	Rules for the mathematical operations
	Valid mathematical operations
	Envelope calculations
	Transformation of results

	Improving the efficiency of your scripts
	Example scripts that access data from an output database
	Finding the maximum value of von Mises stress
	Creating an output database
	An Abaqus Scripting Interface version of FPERT
	Computations with FieldOutput objects
	Computations with FieldValue objects
	Computations with HistoryOutput objects
	Creating a new load combination from different load cases
	Stress range for multiple load cases
	Transformation of field results
	Viewing the analysis of a meshed beam cross-section
	Using infinite elements to compute and view the results of an acoustic far-field analysis
	An Abaqus Scripting Interface version of FELBOW

	Using C++ to access an output database
	About the C++ interface
	What do you need to access the output database?
	Abaqus Scripting Interface documentation style
	How the commands are ordered
	Access
	Path
	Prototype
	Return value

	How the object model for the output database relates to commands
	Object model for the output database
	Model data
	Results data

	Compiling and linking your C++ source code
	Accessing the C++ interface from an existing application
	Initializing the C++ interface
	Link library location
	Runtime library location
	Header file location

	The Abaqus C++ API architecture
	Class naming convention
	Constructors
	Header files

	Utility interface
	Utility interface classes
	Utility interface examples

	Reading from an output database
	The Abaqus/CAE Visualization module tutorial output database
	Making the Odb commands available
	Opening an output database
	Reading model data
	Reading results data
	Reading field output data
	Using bulk data access to an output database
	Using regions to read a subset of field output data
	Reading history output data
	An example of reading field data from an output database

	Writing to an output database
	Creating a new output database
	Writing model data
	Writing results data
	Writing field output data
	Default display properties
	Writing history output data

	Exception handling in an output database
	Computations with Abaqus results
	Rules for the mathematical operations
	Valid mathematical operations
	Envelope calculations
	Transformation of results

	Improving the efficiency of your scripts
	Creating objects to hold loop counters
	Creating objects to hold temporary variables
	Using references to objects

	Example programs that access data from an output database
	Finding the maximum value of von Mises stress
	Creating an output database
	Reading data from an output database
	Decreasing the amount of data in an output database by retaining data at specific frames
	Stress range for multiple load cases
	A C++ version of FELBOW

