
Abaqus GUI Toolkit User's Guide

Contents

Trademarks and Legal Notices..4

Abaqus GUI Toolkit User's Guide..5

What's New..6

Introduction...7
What can I do with the Abaqus GUI Toolkit?...8

Prerequisites for using the Abaqus GUI Toolkit...9

Abaqus GUI Toolkit basics..10

Organization of the Abaqus GUI Toolkit User's Guide...11

Getting Started with the Abaqus GUI Toolkit...13
The kernel and GUI...14

What are the components of an Abaqus GUI application?...15

Plug-ins and customized applications...17

Running the prototype application...18

Building Dialog Boxes..20
Widgets...21

Labels and buttons..22

Text widgets...33

Lists and combo boxes..37

Range widgets...41

Tree widgets..44

Table widget...48

Miscellaneous widgets..67

The create method..72

Widgets and fonts..73

Layout managers...74

About layout managers..75

Padding and spacing...76

Horizontal and vertical frames...77

Vertical alignment for composite children..78

General-purpose layout managers..79

Row and column layout manager..80

Resizable regions..81

Rotating regions..82

Tab books..83

Layout hints...85

Layout examples..86

Tips for specifying layout hints...89

Dialog boxes..90

About dialog boxes..91

Modal versus modeless...92

Showing and hiding dialog boxes..93

Message dialog boxes...94

Custom dialog boxes...100

i

Contents

Data dialog boxes..108

Common dialog boxes...118

Issuing Commands...123
Commands..124

An overview of commands..125

The kernel and GUI processes..126

Executing commands..127

Kernel commands...128

GUI commands...129

AFXTargets..150

Accessing kernel data from the GUI..151

Receiving notification of kernel data changes...152

Modes...157

About modes...158

Mode processing...159

Form modes..168

Procedure modes..174

Picking in procedure modes..181

GUI modules and toolsets...193
Creating a GUI module...194

Examining a GUI module example..195

Registering a GUI module...206

Switching to a GUI module..207

Creating a GUI toolset...208

GUI Toolset example...209

Creating toolset components...210

Registering toolsets...211

Customizing an existing module or toolset..212

Modifying and accessing Abaqus/CAE GUI modules and toolsets...213

The File toolset..218

The Tree toolset...219

The Selection toolset...220

The Help toolset..221

An example of customizing a toolset...222

Creating a customized application...224
Creating an application...225

About the GUI code...226

Startup script...227

Licensing and execution..229

The application object...230

The application object...231

Common methods...232

The main window..233

About the main window...234

The title bar...236

The menu bar..237

Toolbars...238

Abaqus GUI Toolkit User's Guideii

Contents

The context bar..239

The module toolbox...240

The drawing area and canvas...241

The prompt area..242

The message area..243

The command line interface..244

Customizing the main window...245

Modules and toolsets..246

The Abaqus/CAE main window...247

Icons..253

Colors and RGB values..254

Layout hints...272

iiiAbaqus GUI Toolkit User's Guide

Contents

Trademarks and Legal Notices

Trademarks

Abaqus, 3DEXPERIENCE
®
, the 3DS logo, the Compass icon, IFWE, 3DEXCITE, 3DVIA, BIOVIA, CATIA,

CENTRIC PLM, DELMIA, ENOVIA, GEOVIA, MEDIDATA, NETVIBES, OUTSCALE, SIMULIA and
SOLIDWORKS are commercial trademarks or registered trademarks of Dassault Systèmes, a European company
(Societas Europaea) incorporated under French law, and registered with the Versailles trade and companies
registry under number 322 306 440, or its subsidiaries in the United States and/or other countries. All other
trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks
is subject to their express written approval.

Legal Notices

Abaqus and this documentation may be used or reproduced only in accordance with the terms of the software
license agreement signed by the customer, or, absent such agreement, the then current software license agreement
to which the documentation relates.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes or its Affiliates shall not be responsible for the consequences of any errors or omissions that
may appear in this documentation.

© Dassault Systèmes Americas Corp., 2025.

For a full list of the third-party software contained in this release, please go to the Legal Notices in the Abaqus
2025 HTML documentation, which can be obtained from a documentation installation, or in the SIMULIA
Established Products 2025 Program Directory, which is available on www.3ds.com.

Abaqus GUI Toolkit User's Guide4

Trademarks and Legal Notices

Abaqus GUI Toolkit User's Guide

The Abaqus GUI Toolkit User's Guide describes the Abaqus GUI Toolkit, which allows you to customize the
Abaqus/CAE Graphical User Interface by creating your own dialog boxes, GUI modules, and even applications.
The guide is designed to guide you through the process of writing an application by explaining how to use the components
of the toolkit and by providing snippets of example code.

This guide is a part of the Abaqus
®
 documentation collection, which describes all the capabilities of the Abaqus finite

element analysis technology used in SIMULIA
®
 applications.

5

Abaqus GUI Toolkit User's Guide

What's New

There are no enhancements.

2025 FD01

PDF Guides Available

You can download PDF versions of the Abaqus guides from each guide overview.

Benefits: You can easily access the PDF versions of the guides.
In earlier releases, PDF versions of the guides were updated only for the GA (General Availability) release
and could be downloaded from the Dassault Systèmes Knowledge Base. As of 2025 FD01, the PDF guides
will be updated with each release of the HTML versions of the guides.

For more information, see Abaqus GUI Toolkit User's Guide.

Abaqus GUI Toolkit User's Guide6

What's New

Introduction

This chapter provides an overview of the Abaqus GUI Toolkit.
The Abaqus GUI Toolkit is one of the Abaqus Process Automation tools that allow you to modify and extend
the capabilities of the Abaqus/CAE graphical user interface (GUI) to enable a wide range of users to generate
more efficient Abaqus solutions.

In this section:

• What can I do with the Abaqus GUI Toolkit?

• Prerequisites for using the Abaqus GUI Toolkit

• Abaqus GUI Toolkit basics

• Organization of the Abaqus GUI Toolkit User's Guide

7

Introduction

What can I do with the Abaqus GUI Toolkit?

You can use the Abaqus GUI Toolkit to customize Abaqus products.

There are many ways to customize Abaqus products.

• User subroutines allow you to change the way Abaqus/Standard and Abaqus/Explicit compute analysis results.
Information on user subroutines can be found in the Abaqus User Subroutines Guide.

• Environment files allow you to change various default settings. Information on environment files can be found in
the Abaqus Execution Guide.

• Kernel scripts allow you to create new functions to perform modeling or postprocessing tasks. Information on
kernel scripts can be found in the Abaqus Scripting User's Guide.

• GUI scripts allow you to create new graphical user interfaces. GUI scripts are described in this guide.

The Abaqus GUI Toolkit provides programming routines that allow you to create or modify components of the GUI.
The toolkit allows you to do the following:

• Create a new GUI module. A GUI module is a grouping of similar functionality, such as the Part module in
Abaqus/CAE.

• Create a new GUI toolset. A GUI toolset is similar to a GUI module in that it groups similar functionality, but it
generally contains more specific functionality that may be used by one or more GUI modules. The Datum tools in
Abaqus/CAE are an example of a GUI toolset.

• Create new dialog boxes. The Abaqus GUI Toolkit provides a full library of widgets from which you can construct
your own dialog boxes. However, the Abaqus GUI Toolkit is not designed to allow you to modify existing
Abaqus/CAE dialog boxes.

• Remove Abaqus/CAE GUI modules and toolsets. You can choose which GUI modules to include in your application
and which GUI modules to omit. For example, the Abaqus/Viewer application does not include the modeling-related
GUI modules; it contains only the Visualization module.

• Remove some top-level menus or some items in those top-level menus. For example, you could remove the entire
top-level Viewport menu to prevent users from manipulating viewports, or you could remove the Import and
Export menu items from the File menu.

• Perform limited changes to Abaqus/CAE GUI modules and toolsets. For more information, see Modifying and

accessing Abaqus/CAE GUI modules and toolsets.

The Abaqus GUI Toolkit is not designed to run outside of Abaqus/CAE; it must be used with Abaqus/CAE in order
for the infrastructure to function properly.

Abaqus GUI Toolkit User's Guide8

What can I do with the Abaqus GUI Toolkit?

Prerequisites for using the Abaqus GUI Toolkit

To write applications using the Abaqus GUI Toolkit, you need to have some experience in Python programming,
Abaqus kernel commands, object-oriented programming, and GUI design.

Python programming

You should have some experience with the Python language before you write Abaqus/CAE kernel scripts. You
should have similar experience when you program GUI applications.

Abaqus kernel commands

The ultimate goal of the GUI is to send a command to the kernel for execution; therefore, you should understand
how kernel commands work.

Object-oriented programming

Python is an object-oriented language, and writing an application generally consists of deriving your own new
classes, writing methods for them, and manipulating their data. You should understand the concepts of
object-oriented programming.

GUI design

Depending on the complexity of your application, it may be helpful to have some training in user-interface design
and usability testing. This will help you create an application that is both intuitive and easy to use.

Abaqus offers training classes that cover Python, kernel scripting, and GUI design. For more information, contact your
local sales office. Training in GUI design is also available from a number of independent training organizations.

9

Prerequisites for using the Abaqus GUI Toolkit

Abaqus GUI Toolkit basics

The Abaqus GUI Toolkit is an extension of the FOX GUI Toolkit, just as the Abaqus Scripting Interface is an extension
of the Python programming language.
FOX, which stands for Free Objects for X, is a modern, object-oriented, platform-independent GUI toolkit. Since the
Abaqus GUI Toolkit is platform-independent, once you write an application for one platform, you can run that application
on all supported platforms—you do not need to change your source code.

The user interface produced by the Abaqus GUI Toolkit looks similar on all platforms. This is due to the architecture
of the toolkit. While the application programming interface (API) is the same on all platforms, the underlying calls
made to the operating system’s GUI libraries differ—on Linux systems calls are made to the Xt library, whereas on
Windows systems calls are made to the Win32 library. These differences are hidden from the application developer.

Since the FOX GUI Toolkit is object oriented, it allows developers to extend its functionality easily by deriving new
classes from the base toolkit. The Abaqus GUI Toolkit takes advantage of this feature by adding special functionality
required for Abaqus GUIs. Class names that begin with FX are part of the standard FOX library; for example,
FXButton. Class names that begin with AFX are part of the Abaqus extensions to the FOX library; for example,
AFXDialog. When the same class exists with both the FX and AFX prefix (for example, FXTable and AFXTable),
you should use the AFX version since it provides enhanced functionality for building applications using Abaqus.

Abaqus GUI Toolkit User's Guide10

Abaqus GUI Toolkit basics

Organization of the Abaqus GUI Toolkit User's Guide

This guide is organized by functionality and is designed to guide developers through the process of writing an application
by explaining how to use the components of the toolkit and by providing snippets of example code.
A separate Abaqus GUI Toolkit Reference Guide that contains an alphabetical listing of all of the toolkit calls is
provided.

The Abaqus GUI Toolkit is based on the FOX GUI toolkit. While this guide explains some of the basic concepts of
the FOX toolkit, it does not provide details for many other aspects of the FOX toolkit. For more details on the FOX
GUI toolkit, refer to the FOX web site (http://www.fox-toolkit.org).

This guide consists of the following sections:

Widgets

This section describes some of the most commonly used widgets in the Abaqus GUI Toolkit.

Layout managers

This section describes how to use the various layout managers in the Abaqus GUI Toolkit to arrange widgets in
a dialog box.

Dialog boxes

This section describes the dialog boxes that you can create using the Abaqus GUI Toolkit.

Commands

In an application that employs a graphical user interface, the interface must collect input from the user and
communicate that input to the application. In addition, the graphical user interface must keep its state up-to-date
based on the state of the application. This section describes how those tasks are accomplished using the Abaqus
GUI Toolkit and the two types of commands in Abaqus/CAE—kernel commands and GUI commands.

Modes

A mode is a mechanism for gathering input from the user, processing that input, and then issuing a command
to the kernel. This section describes the modes that are available in the Abaqus GUI Toolkit.

Creating a GUI module

This section describes how you can create a GUI module.

Creating a GUI toolset

This section describes how you can create a GUI toolset.

Customizing an existing module or toolset

The previous sections describe how you can create a new module or toolset. Alternatively, the Abaqus GUI
Toolkit allows you to derive a new module or toolset from an existing module or toolset and to add or remove
functionality from it.

11

Organization of the Abaqus GUI Toolkit User's Guide

Creating an application

This section explains how to create an application, such as Abaqus/CAE. It also describes the high-level
infrastructure that is responsible for running the application.

The application object

This section describes the Abaqus application object. The application object manages the message queue, timers,
chores, GUI updating, and other system facilities.

The main window

This section describes the layout, components, and behavior of the Abaqus main window.

Customizing the main window

The main window base class provides the GUI infrastructure to allow user interaction, the manipulation of
modules, and the display of objects in the viewport. This section describes how you add functionality to an
application by deriving from the main window base class and then registering modules and toolsets.

Abaqus GUI Toolkit User's Guide12

Organization of the Abaqus GUI Toolkit User's Guide

Getting Started with the Abaqus GUI
Toolkit

This chapter provides an overview of a customized GUI application.

In this section:

• The kernel and GUI

• What are the components of an Abaqus GUI application?

• Plug-ins and customized applications

• Running the prototype application

13

Getting Started with the Abaqus GUI Toolkit

The kernel and GUI

Abaqus/CAE executes in two separate processes: the kernel and the GUI.

The role of the kernel is to provide access to Abaqus databases and the commands that create and modify those databases.
The role of the GUI is to collect user input, which is then packaged as a command string and sent to the kernel for
execution. The GUI is not essential to the execution of Abaqus—an entire model can be constructed, analyzed, and
post-processed through the use of kernel scripts, without ever invoking the GUI.

Typically, when you develop some custom functionality you start by creating the kernel commands that implement
that functionality. These commands can be debugged by executing them from the command line interface (CLI) in
Abaqus/CAE. Once you have determined that the kernel commands are working correctly from the CLI, you can design
a GUI to collect the user inputs needed by your commands.

Abaqus GUI Toolkit User's Guide14

The kernel and GUI

What are the components of an Abaqus GUI application?

There are many components involved in creating a GUI application.
Figure 1 shows an overview of these components and how they are connected. This section provides a brief overview
of each component. The components are discussed in more detail in subsequent chapters.

Figure 1: An overview of an Abaqus GUI application.

Widgets

At the lowest level of an application, you use widgets to collect input from the user through a graphical user
interface. For example, a text field widget presents a box into which the user can type numbers. Similarly, a
check button widget presents a small box that the user can click on to toggle an option on or off.

Layout managers

Layout managers arrange widgets by providing alignment options. For example, a horizontal frame arranges
widgets in a row. A vertical frame arranges widgets in a column.

Dialog boxes

Dialog boxes group widgets inside layout managers and present all the inputs required for a particular function.
For example, the Print dialog box presents all the controls that allow the user to specify what should be printed
and how it should be printed.

Modes

Modes are GUI mechanisms that control the display of a particular user interface. Modes are also responsible
for issuing the command associated with that user interface. For example, a mode is started when you select
File->Print. This mode posts the Print dialog box and issues the print command when the user clicks OK.

15

What are the components of an Abaqus GUI application?

Modules and toolsets

Modules and toolsets group functionality together. A GUI module is a grouping of similar functionality, such
as the Part module in Abaqus/CAE. A GUI toolset is similar to a GUI module in that it groups similar functionality,
but it generally contains more specific functionality that may be used by one or more GUI modules. The Datum
tools in Abaqus/CAE are an example of a GUI toolset.

The application

The application is responsible for high-level activities, such as managing the GUI process used by the application
and updating the state of the widgets. In addition, the application is responsible for interacting with the desktop’s
window manager.

Abaqus GUI Toolkit User's Guide16

What are the components of an Abaqus GUI application?

Plug-ins and customized applications

There are two ways you can make use of the Abaqus GUI Toolkit—through the use of the plug-in architecture or by
creating a custom application.

The Plug-in toolset is layered on top of Abaqus/CAE. First, the Abaqus/CAE application is built, and then the Plug-in
toolset searches specific directories for files that add items into the top level Plug-ins menu. The Plug-in toolset will
probably meet your needs if you intend only to add functionality to the standard Abaqus/CAE application, and it is
sufficient to provide access to this functionality through the Plug-ins menu in the main menu bar. Plug-ins are described
in detail in Using plug-ins.

In contrast, to create a customized application, you build the application from the ground up. You should write a
customized application if, in addition to adding functionality to Abaqus/CAE, you want to modify some standard
features of Abaqus/CAE. While creating a custom application offers the most flexibility, it requires more work than
using the Plug-in toolset. However, a custom application allows you to modify aspects of an application that you cannot
control using the Plug-in toolset. Specifically, a custom application allows you to do the following:

• Remove Abaqus/CAE modules or toolsets. When you create a custom application, you determine which modules
and toolsets are loaded into the application and the order in which they appear.

• Modify Abaqus/CAE modules or toolsets. If you want to add or remove functionality from an Abaqus/CAE module,
you must derive your module from an Abaqus/CAE module and then register your module instead of the Abaqus/CAE
module. You follow a similar procedure if you want to add or remove functionality from an Abaqus/CAE toolset.

• Change the application name and version numbers. When you create a custom application, you create a startup
script that initializes the application object with the name of your application and its version numbers.

• Control the startup command and license token used. When you create a custom application, you modify the site
configuration file that defines the command used to start the application. You also modify the same site configuration
file to specify the license token that is checked out when the application starts.

17

Plug-ins and customized applications

Running the prototype application

A custom application called the prototype application is available from the SIMULIA Community.
The prototype application allows you to experiment with the contents of your dialog box until you produce a design
that is satisfactory. You can start the prototype application, make changes to the code that controls the contents of the
dialog box, and instantly see those changes reflected in the application.

The SIMULIA Community (SIMUILA Community > Learning Resources > 3DEXPERIENCE and Traditional Products

> Abaqus > Plug-ins/Scripts) provides examples of plug-ins and customized applications as well as access to a
community of users that fosters the advance of the Abaqus Scripting Interface and the Abaqus GUI Toolkit. Search in
this community for “Prototype Example” to download the zip file for the prototype application, then unzip the files
and go to the directory containing the files that you downloaded. To use the prototype application, open the file
testDB.py in a text editor. From the system prompt, enter the following:

abaqus cae -custom prototypeApp -noStartup

The -custom parameter indicates that you are executing an application that is a customized version of Abaqus/CAE.
The -noStartup parameter indicates that you want to start Abaqus/CAE without displaying the startup screen. For
more information, see Abaqus/CAE Execution.

The application creates two icons in the toolbox, as shown in Figure 1.

Figure 1:The prototype application.

The icon reloads the form code (testForm.py); the icon reloads the dialog box code (testDB.py). If

you make changes to the form code, click on the icon to reload that file. If you make changes to the dialog box

code, click on the icon to reload that file. You do not need to exit and restart Abaqus/CAE to see your changes in
the form or dialog box.

For example, try the following:

• Click the icon to post the dialog box and note the text labels shown in the dialog box.

• Click Cancel in the dialog box to unpost it.

• Change one of the labels in testDB.py and save the file.

• Click the icon to post the dialog box again. You will see the modified label in the dialog box.

Abaqus GUI Toolkit User's Guide18

Running the prototype application

When you click OK in the dialog box, the kernel command issued by the dialog box is written to the message area,
rather than being executed by Abaqus/CAE. This allows you to debug the command before you try to execute it in the
kernel.

After you have debugged your form and dialog box code, you can modify the form to issue the command to the kernel

by following the example in Form example. You can connect the form to your GUI, instead of to the icon, by
following the example shown in Examining a GUI module example.

19Abaqus GUI Toolkit User's Guide

Running the prototype application

Building Dialog Boxes

This part describes the components of a dialog box and how you create the components using the Abaqus GUI
Toolkit.

In this section:

• Widgets

• Layout managers

• Dialog boxes

Abaqus GUI Toolkit User's Guide20

Building Dialog Boxes

Widgets

This section describes how you can create widgets in your application.
There are many widgets in the Abaqus GUI Toolkit; however, only the most commonly used widgets are described
here. You should refer to the Abaqus GUI Toolkit Reference Guide for a complete listing of widget classes.

In this section:

• Labels and buttons

• Text widgets

• Lists and combo boxes

• Range widgets

• Tree widgets

• Table widget

• Miscellaneous widgets

• The create method

• Widgets and fonts

21

Labels and buttons

This section describes the widgets in the Abaqus GUI Toolkit that use labels and buttons.

In this section:

• About labels and buttons

• Labels

• Push buttons

• Check buttons

• Radio buttons

• Menu buttons

• Popup menus

• Toolbar and toolbox buttons

• Flyout buttons

• Color buttons

Abaqus GUI Toolkit User's Guide22

About labels and buttons

Several widgets in the Abaqus GUI Toolkit support labels.
If you want to put a label before a text field, for example, you should use AFXTextField instead of creating a horizontal
frame and adding a label widget and a text field widget. The following sections describe the specific widgets that
support labels.

The label and button constructors all take a text string argument. This text string can consist of three parts, where each
part is separated by \t. The three parts of the text string are

Text

The text displayed by the widget.

Tip text

The text displayed when the cursor is held over the widget for a short period of time. If there is only an icon
associated with a widget, you must supply the tip text.

Help text

The text displayed in the application's status bar, assuming that the application has a status bar.

In addition, you can define a keyboard accelerator for the widget by preceding one of the characters in the text with
an ampersand (&) character. For example, if you specify the string &Calculate for a button, the button label will
appear as shown in Figure 1. You can use the accelerator to invoke the button by pressing the [Alt] key along with
the [C] key.

Figure 1: A keyboard accelerator applied to a button.

23

About labels and buttons

Labels

The FXLabel widget displays a read-only string. FXLabel can also display an optional icon.

FXLabel(parent, 'This is an FXLabel.\tThis is\nthe tooltip')

Figure 1: An example of a text label from FXLabel.

Abaqus GUI Toolkit User's Guide24

Labels

Push buttons

The FXButton widget contains a label and/or an icon.
When the user clicks the button, an immediate action is invoked.

 FXButton(parent, 'This is an FXButton')

Figure 1: An example of a button from FXButton.

25

Push buttons

Check buttons

The FXCheckButton widget provides an “On/Off” toggling capability. The button also supports a third “Maybe” or
“Some” state.
The “Maybe” state is often used to represent a partial selection; for example, the AFXOptionTreeList widget makes
use of the “Maybe” state. You can set the “Maybe” state only programmatically; the user cannot toggle the button to
this state.

FXCheckButton(parent, 'This is an FXCheckButton')

Figure 1: An example of a check button and a label from FXCheckButton.

Abaqus GUI Toolkit User's Guide26

Check buttons

Radio buttons

The FXRadioButton widget provides a one-of-many selection from a group of buttons.

FXRadioButton(parent, 'This is FXRadioButton 1')
FXRadioButton(parent, 'This is FXRadioButton 2')
FXRadioButton(parent, 'This is FXRadioButton 3')

Figure 1: An example of radio buttons from FXRadioButton.

27

Radio buttons

Menu buttons

A menu consists of a menu title created by AFXMenuTitle, a menu pane created by AFXMenuPane, and a menu
command created by AFXMenuCommand.

The menu title resides in a menu bar and controls the display of the menu pane associated with the menu title. The
menu pane contains menu commands. Menu commands are buttons that generally invoke some action. A menu pane
can also contain a cascading menu created by AFXMenuCascade. A cascading menu provides submenus within a
menu. Figure 1 illustrates the components of a menu.

MenuTitle	 MenuTitle 	 MenuTitle

MenuCommand

MenuCommand

MenuCommand

MenuCascade
MenuCommand

MenuCommand

Menu Bar

Menu Pane

Figure 1:The components of a menu.

The following example illustrates the use of cascading menus:

menu = AFXMenuPane(self)
AFXMenuTitle(self, '&Menu1', None, menu)
AFXMenuCommand(self, menu, '&Item 1', None, form1,
 AFXMode.ID_ACTIVATE)
subMenu = AFXMenuPane(self)
AFXMenuCascade(self, menu, '&Submenu', None, subMenu)
AFXMenuCommand(self, subMenu, '&Subitem 1', None,
 form2, AFXMode.ID_ACTIVATE)

Figure 2: An example of cascading menu buttons from AFXMenuCascade.

In addition to specifying a mnemonic using the & syntax described in Labels and buttons, you can specify an accelerator
in the menu item's label. You specify an accelerator by separating it from the button's text by a \t. For example,

AFXMenuCommand(self, menu, 'Graphics Options...\tCtrl+G', None,
 GraphicsOptionsForm(self), AFXMode.ID_ACTIVATE)

Abaqus GUI Toolkit User's Guide28

Menu buttons

Popup menus

You can create a popup menu that appears when the user clicks mouse button 3 over a widget.

The following statements illustrate how you can create a popup menu that contains two buttons that appear when the
user clicks mouse button 3 over a tree widget:

In the dialog box constructor:

 def __init__(self, form):

 ...

 FXMAPFUNC(self, SEL_RIGHTBUTTONPRESS, self.ID_TREE,
 MyDB.onCmdPopup)
 FXMAPFUNC(self, SEL_COMMAND, self.ID_TEST1,
 MyDB.onCmdTest1)
 FXMAPFUNC(self, SEL_COMMAND, self.ID_TEST2,
 MyDB.onCmdTest2)

 self.menuPane = None

 FXTreeList(self, 5, self, self.ID_TREE,
 LAYOUT_FILL_X|LAYOUT_FILL_Y|
 TREELIST_SHOWS_BOXES|TREELIST_SHOWS_LINES|
 TREELIST_ROOT_BOXES|TREELIST_BROWSESELECT)
 ...

 def onCmdPopup(self, sender, sel, ptr):

 if not self.menuPane:
 self.menuPane = FXMenuPane(self)
 FXMenuCommand(self.menuPane, 'Test1', None, self,
 self.ID_TEST1)
 FXMenuCommand(self.menuPane, 'Test2', None, self,
 self.ID_TEST2)
 self.menuPane.create()

 status, x, y, buttons = self.getCursorPosition()
 x, y = self.translateCoordinatesTo(self.getRoot(), x, y)
 self.menuPane.popup (None, x, y)

 return 1

Note: The AFXTable has its own popup menu commands that you should use in place of the approach described
in this section.

29

Popup menus

Toolbar and toolbox buttons

The AFXToolButton widget displays no text in its button, but the button generally has a tool tip.

You group the buttons created by AFXToolButton into toolbars using AFXToolbarGroups or into toolboxes using
AFXToolboxGroups. AFXToolbarGroups and AFXToolboxGroups provide visual grouping between buttons in the
toolbar or toolbox. For example,

Create toolbar icons
#
group = AFXToolbarGroup(self)
AFXToolButton(group, '\tMy Module\nToolbar Button',
 icon, sel)

Create toolbox icons
#
group = AFXToolboxGroup(self)
AFXToolButton(group, '\tMy Module\nToolbox Button',
 icon, sel)

Abaqus GUI Toolkit User's Guide30

Toolbar and toolbox buttons

Flyout buttons

The AFXFlyoutButton widget displays a flyout popup window.

The flyout popup window contains AFXFlyoutItem widgets and appears when the user presses mouse button 1 on the
button and holds down mouse button 1 for a certain time span. If the user simply clicks mouse button 1 quickly on the
button, the flyout popup window will not be displayed, and the flyout button will act just like a regular button. The
AFXFlyoutButton widget displays the icon of the current target along with a right triangle in the lower right corner to
indicate that a flyout popup window can be invoked. For example,

group = AFXToolbarGroup(self)
popup = FXPopup(getAFXApp().getAFXMainWindow())
AFXFlyoutItem(popup, '\tFlyout Button 1', squareIcon)
AFXFlyoutItem(popup, '\tFlyout Button 2', circleIcon)
AFXFlyoutItem(popup, '\tFlyout Button 3', triangleIcon)
AFXFlyoutButton(group, popup)
popup.create()

Figure 1: An example of flyout buttons from AFXFlyoutItem.

31

Flyout buttons

Color buttons

The AFXColorButton widget displays a push button that shows a color.

Clicking the button posts the color selection dialog box, which the user can use to change the value of the color for the
button. For example,

 AFXColorButton(parent, 'Color:')

Figure 1: An example of an AFXColorButton.

When connected to an AFXStringKeyword, this widget will assign the value of the button's current color to the keyword
in hex format; for example, "#FF0000".

Abaqus GUI Toolkit User's Guide32

Color buttons

Text widgets

This section describes the widgets in the Abaqus GUI Toolkit that allow the user to input text.

In this section:

• Single line text field widget

• Multi-line text widget

33

Single line text field widget

The AFXTextField widget provides a single line text entry field.

AFXTextField extends the capability of the standard FXTextField widget with the following:

• An optional label.

• Support for a toggled version and a read-only state.

• An additional numeric type (complex).

• Horizontal and vertical layouts.

For example,

 AFXTextField(parent, 8, 'String AFXTextField')

Figure 1: An example of a single-line text field from AFXTextField.

Text fields are generally connected to keywords, and the type of the keyword determines the type of input allowed in
the text field. For example, if the text field is connected to an integer keyword, the keyword will verify that the input
in the text field is a valid integer. You do not need to specifiy any option flags for the text field to get this behavior.
Complex text fields are an exception to this—to display the extra field needed to collect complex input, you must
specify the bit flag shown in the following example:

AFXTextField(parent, 8, 'Complex AFXTextField',
 None, 0, AFXTEXTFIELD_COMPLEX)

Figure 2: An example of a single-line complex numeric field from AFXTextField.

Toggled variation

In many cases a check button precedes a labeled text field. The check button allows the user to toggle the
component on or off; when the component is toggled off, the text field becomes disabled. The AFXTextField
widget creates a check button with this behavior when you supply the AFXTEXTFIELD_CHECKBUTTON
flag. The following example creates a check button with a text field. It also configures the widget in a vertical
orientation so that the label is above the text field.

AFXTextField(parent, 8, 'AFXTextField', None, 0,
 AFXTEXTFIELD_CHECKBUTTON|AFXTEXTFIELD_VERTICAL)

Figure 3: An example of a check button with a labeled text field from AFXTextField.

Non-editable variation

In some cases you may want to change the behavior of a text field so that it cannot be edited by the user; for
example, when a particular check button in the dialog box is not set. In this case, you can make the text field

Abaqus GUI Toolkit User's Guide34

Single line text field widget

non-editable when the check button is unset by calling the setEditable(False) method of the AFXTextField
widget.

Read-only variation

In some cases you may want to change the behavior of a text field so that it cannot be edited by the user and
appears as a label, making it clear that the user cannot change its contents. For example, when you are using the
Load module in Abaqus/CAE, there are some values that you can specify in the analysis step in which the load
was created but you cannot change in subsequent steps. The AFXTextField widget supports a read-only state
through the setReadOnlyState method. For example,

tf = AFXTextField(parent, 8,
 'String AFXTextField in read-only mode:', keyword)
tf.setReadOnlyState(True)

35Abaqus GUI Toolkit User's Guide

Single line text field widget

Multi-line text widget

FXText provides a multi-line text entry area.

For example,

text = FXText(parent, None, 0,
 LAYOUT_FIX_WIDTH|LAYOUT_FIX_HEIGHT, 0, 0, 300, 100)
text.setText('This is an FXText widget')

Figure 1: An example of a multi-line text entry area from FXText.

Abaqus GUI Toolkit User's Guide36

Multi-line text widget

Lists and combo boxes

This section describes the widgets in the Abaqus GUI Toolkit that allow you to choose one or more items from
a list.

• You use a list widget when there is enough room in the GUI and when it is helpful to display all or most of
the choices at the same time.

• You use a combo box to conserve space in the GUI and when it is preferable to display only the current
choice.

In this section:

• Lists

• Combo boxes

• List boxes

37

Lists

AFXList allows one or more selections from its items.

The list created by AFXList supports the following selection policies:

LIST_SINGLESELECT

The user can select zero or one items.

LIST_BROWSESELECT

One item is always selected.

LIST_MULTIPLESELECT

The user can select zero or more items.

LIST_EXTENDEDSELECT

The user can select zero or more items; drag-, shift-, and control-selections are allowed.

The AFXDialog base class has special code designed to handle double-click messages from a list. If the user double-clicks
in a list, the dialog box first attempts to call the Apply button message handler. If the Apply button message handler
is not found, the dialog attempts to call the Continue button message handler. If the Continue button message handler
is not found, the dialog attempts to call the OK button message handler. As a result, you do not need to do anything
in your script to get this behavior.

However, if you have special double-click processing needs, you can turn off this double-click behavior by specifying
AFXLIST_NO_AUTOCOMMIT as one of the list's option flags. If you turn off the double-click behavior, you must
catch the SEL_DOUBLECLICKED message from the list in your dialog box and handle it appropriately.

Note:

Because the list may be used in combination with other types of widgets, the list does not draw a border around
itself. As a result, if you want a border around the list, you must provide the border by placing the list inside
some other widget, such as a frame. If you do not want a horizontal scrollbar, use the HSCROLLING_OFF flag;
this flag forces the list to size its width to fit its widest item.

The following is an example of a list within a vertical frame:

vf = FXVerticalFrame(parent, FRAME_THICK|FRAME_SUNKEN,
 0, 0, 0, 0, 0, 0, 0, 0)
list = AFXList(vf, 3, tgt, sel, LIST_BROWSESELECT|HSCROLLING_OFF)
list.appendItem('Thin')
list.appendItem('Medium')
list.appendItem('Thick')

Figure 1: An example of a list with a frame from AFXList.

Abaqus GUI Toolkit User's Guide38

Lists

Combo boxes

AFXComboBox provides a one-of-many selection from its items.
AFXComboBox combines a read-only text field with a drop-down list.

After the parent argument, the next three arguments to the AFXComboBox constructor are the width of the text field,
the number of visible list items when the list is exposed, and the label. If you specify the width as zero, the combo box
will automatically size itself to the widest item in its list. For example,

comboBox = AFXComboBox(p, 0, 3, 'AFXComboBox:')
comboBox.appendItem('Item 1')
comboBox.appendItem('Item 2')
comboBox.appendItem('Item 3')

Figure 1: An example of a combo box from AFXComboBox.

39

Combo boxes

List boxes

The AFXListBox widget provides a one-of-many selection from its items.

AFXListBox differs from AFXComboBox in that the items displayed by AFXListBox can include icons. For example,

listBox = AFXListBox(parent, 3, 'AFXListBox:', keyword)
listBox.appendItem('Item 1', thinIcon)
listBox.appendItem('Item 2', mediumIcon)
listBox.appendItem('Item 3', thickIcon)

Figure 1: An example of a list box from AFXListBox.

Abaqus GUI Toolkit User's Guide40

List boxes

Range widgets

This section describes the widgets in the Abaqus GUI Toolkit that allow the user to specify a value within certain
bounds.

In this section:

• Sliders

• Spinners

41

Sliders

The AFXSlider widget provides a handle that the user can drag to set a value using only the mouse.

AFXSlider extends the capability of the FXSlider widget by providing the following:

• An optional title.

• Minimum and maximum range labels.

• The ability to display the current value above the drag handle.

For example,

slider = AFXSlider(p, None, 0,
 AFXSLIDER_INSIDE_BAR|AFXSLIDER_SHOW_VALUE|LAYOUT_FILL_X)
slider.setMinLabelText('Min')
slider.setMaxLabelText('Max')
slider.setDecimalPlaces(1)
slider.setRange(20, 80)
slider.setValue(50)

Figure 1: An example of a slider from AFXSlider.

Abaqus GUI Toolkit User's Guide42

Sliders

Spinners

The AFXSpinner widget combines a text field and two arrow buttons.

The arrows increment the integer value shown in the text field. AFXSpinner extends the capability of the FXSpinner
widget by providing an optional label. For example,

spinner = AFXSpinner(p, 4, 'AFXSpinner:')
spinner.setRange(20, 80)
spinner.setValue(50)

Figure 1: An example of a spinner from AFXSpinner.

The AFXFloatSpinner widget is similar to the AFXSpinner widget, but it allows floating point values.

43

Spinners

Tree widgets

This section describes the tree widgets in the Abaqus GUI Toolkit.
A tree widget arranges its children in a hierarchical fashion and allows the various branches to be expanded or
collapsed. A file browser such as Microsoft Windows Explorer is a common example of an application that
makes use of a tree widget.

In this section:

• Tree list

• Option tree list

Abaqus GUI Toolkit User's Guide44

Tree list

The FXTreeList widget provides a tree structure of children that can be expanded and collapsed.

The FXTreeList constructor is defined by the following prototype:

FXTreeList(p, nvis, tgt=None, sel=0,
 opts=TREELIST_NORMAL, x=0, y=0, w=0, h=0)

The arguments to the FXTreeList constructor are described in the following list:

parent

The first argument in the constructor is the parent. An FXTreeList does not draw a frame around itself;
therefore, you may want to create an FXVerticalFrame to use as the parent of the tree. You should zero
out the padding in the frame so that the frame wraps tightly around the tree.

number of visible items

The number of items that will be visible when the tree is first displayed.

target and selector

You can specify a target and selector in the tree constructor arguments.

opts

The option flags that you can specify in the tree constructor are shown in the following table:

EffectOption flag

TREELIST_EXTENDEDSELECT TREELIST_NORMAL (default)

Extended selection mode allows the user to drag-select ranges of items.TREELIST_EXTENDEDSELECT

Single selection mode allows the user to select up to one item.TREELIST_SINGLESELECT

Browse selection mode enforces one single item to be selected at all times.TREELIST_BROWSESELECT

Multiple selection mode is used for selection of individual items.TREELIST_MULTIPLESELECT

Automatically select under cursor.TREELIST_AUTOSELECT

Show lines between items.TREELIST_SHOWS_LINES

Show boxes when item can expand. TREELIST_SHOWS_BOXES

Show root item boxes also.TREELIST_ROOT_BOXES

The following statements show an example of creating a tree:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
tree = FXTreeList(vf, 5, None, 0,
 LAYOUT_FILL_X|LAYOUT_FILL_Y|
 TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|
 TREELIST_SHOWS_LINES|TREELIST_BROWSESELECT)

45

Tree list

You add an item to a tree by supplying a parent and a text label. You begin by adding root items to the tree. Root items
have a parent of None. The Abaqus GUI Toolkit provides several ways of adding items to a tree; however, the most
convenient approach uses the addItemLast method, as shown in the following example:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
self.tree = FXTreeList(vf, 5, None, 0,
 LAYOUT_FILL_X|LAYOUT_FILL_Y|
 TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|
 TREELIST_SHOWS_LINES|TREELIST_BROWSESELECT)
option1 = self.tree.addItemLast(None, 'Option 1')
self.tree.addItemLast(option1, 'Option 1a')
self.tree.addItemLast(option1, 'Option 1b')
option2 = self.tree.addItemLast(None, 'Option 2')
self.tree.addItemLast(option2, 'Option 2a')
option2b = self.tree.addItemLast(option2, 'Option 2b')
self.tree.addItemLast(option2b, 'Option 2bi')
option3 = self.tree.addItemLast(None, 'Option 3')

Figure 1: An example of a tree widget.

You can also specify icons to be used for each tree item. The “open” icon is displayed next to an item when it is selected;
the “closed” icon is displayed when the item is not selected. These icons are not associated with the expanded/collapsed
state of a branch. For example, Microsoft's Windows Explorer uses open and closed folder icons to show the selected
state.

You can check if an item is selected using the tree's isItemSelected method. The tree widget will send its target
a SEL_COMMAND message whenever the user clicks on an item. You can handle this message and then traverse all
the items in the tree to find the selected item. The following example uses a message handler that assumes that the tree
is browse-select and allows the user to select only one item at a time:

def onCmdTree(self, sender, sel, ptr):

 w = self.tree.getFirstItem()
 while(w):
 if self.tree.isItemSelected(w):
 # Do something here based on
 # the selected item, w.
 break
 if w.getFirst():
 w=w.getFirst()
 continue
 while not w.getNext() and w.getParent():
 w=w.getParent()
 w=w.getNext()

Abaqus GUI Toolkit User's Guide46

Tree list

Option tree list

The AFXOptionTreeList widget provides a tree structure of children that can be toggled.

The tree structure includes branches along with leaves at the end of a branch. The user can toggle the leaves of the tree
on or off. The user can also toggle the entire branch on or off. The toggle controls the settings of all the children of the
branch—if the branch is toggled off, all the children are toggled off and vice versa. For example,

tree = AFXOptionTreeList(parent, 6)
tree.addItemLast('Item 1')
item = tree.addItemLast('Item 2')
item.addItemLast('Item 3')
item.addItemLast('Item 4')
item.addItemLast('Item 5')

Figure 1: An example of an option tree list from AFXOptionTreeList.

47

Option tree list

Table widget

The AFXTable widget arranges items in rows and columns, similar to a spreadsheet.

In this section:

• Table widget layout

• Table constructor

• Rows and columns

• Spanning

• Justification

• Editing

• Types

• List type

• Boolean type

• Icon type

• Color type

• Popup menu

• Colors

• Sorting

Abaqus GUI Toolkit User's Guide48

Table widget layout

The AFXTable widget lays out a table that can have leading rows and columns, which serve as headings.

Figure 1 shows an example of how the Abaqus GUI Toolkit lays out a table.

leading row

leading column

items

Figure 1:The layout of a table.

The AFXTable widget has many options and methods that allow a lot of flexibility when you are trying to configure
a table for specific purposes. These options and methods are discussed in the following sections.

49

Table widget layout

Table constructor

You can specify the parent, the number of visible rows and columns, the number of rows and columns, the target and
selector, and the option flags in the AFXTable constructor.

The AFXTable constructor is defined by the following prototype:

AFXTable(p, numVisRows, numVisColumns, numRows, numColumns,
 tgt=None, sel=0, opts=AFXTABLE_NORMAL,
 x=0, y=0, w=0, h=0,
 pl= DEFAULT_MARGIN, pr=DEFAULT_MARGIN,
 pt=DEFAULT_MARGIN, pb=DEFAULT_MARGIN)

The AFXTable constructor has the following arguments:

parent

The first argument in the constructor is the parent. An AFXTable does not draw a frame around itself; therefore,
you may want to create an FXVerticalFrame to use as the parent of the table. You should zero out the
padding in the frame so that the frame wraps tightly around the table.

number of visible rows and columns

The number of rows and columns that will be visible when the table is first displayed. If the number of visible
rows or columns is less than the total number of rows or columns in the table, the appropriate scroll bars are
displayed.

number of rows and columns

The number of rows and columns to be created when the table is created. These numbers include leading rows
and columns. If the size of the table is fixed, you specify the total number of rows and columns. If the size of
the table is dynamic, you specify 1 row and 1 column (plus any leading rows or columns) and allow the user
to add rows or columns as necessary.

target and selector

You can specify a target and selector in the table constructor arguments. A table is generally connected to an
AFXTableKeyword with a selector of 0, unless the table has columns that are not directly related to the data
required by the command to be sent to the kernel. If the table has columns that are not required by the kernel,
you can specify the dialog as the target so that the data in the table can be processed appropriately by your code.
You can also use the AFXColumnItems object to manage selection in particular table column automatically (for
more information, see Table keyword example).

opts

The option flags that you can specify in the table constructor are shown in the following table:

Effect Option flag

AFXTABLE_COLUMN_RESIZABLE | LAYOUT_FILL_X |
LAYOUT_FILL_Y

AFXTABLE_NORMAL (default)

Allows columns to be resized by the user.AFXTABLE_COLUMN_RESIZABLE

Allows rows to be resized by the user.AFXTABLE_ROW_RESIZABLE

AFXTABLE_COLUMN_RESIZABLE |
AFXTABLE_ROW_RESIZABLE

AFXTABLE_RESIZE

Abaqus GUI Toolkit User's Guide50

Table constructor

Effect Option flag

Disallows selecting the entire column when its heading is clicked.AFXTABLE_NO_COLUMN_SELECT

Disallows selecting the entire row when its heading is clicked.AFXTABLE_NO_ROW_SELECT

Allows up to one item to be selected.AFXTABLE_SINGLE_SELECT

Enforces one single item to be selected at all times.AFXTABLE_BROWSE_SELECT

Selecting an item in a row selects the entire row.AFXTABLE_ROW_MODE

Allows all items in the table to be edited.AFXTABLE_EDITABLE

By default, the user can select multiple items in a table. To change this behavior, you should use the appropriate
flag to specify either single select mode or browse select mode. In addition, you can specify whether the entire
row should be selected when the user selects any item in the row. Abaqus/CAE exhibits this behavior in manager
dialogs that contain more than one column.

The following statements creates a table with default settings:

Tables do not draw a frame around their border.
Therefore, add a frame widget with zero padding.

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2)

Figure 1: A table created with default settings.

51Abaqus GUI Toolkit User's Guide

Table constructor

Rows and columns

The table supports leading rows and columns.
Leading rows and columns are displayed as buttons using a bold text. Leading rows are displayed at the top of the
table, and leading columns are displayed on the left side of the table.

The number of rows and columns that you specify in the table constructor are the total number of rows and columns,
including the leading rows and columns. By default, the table has no leading rows or columns—you must set the leading
rows and columns after the table is constructed using the appropriate table methods. You can also specify the labels
to be displayed in these rows and columns. If you do not specify any labels for a leading row or column, it will be
numbered automatically. You can set more than one label at once in a heading by using “\t” to separate the labels in a
single string.

By default, no gridlines are drawn around items. You can control the visibility of the horizontal and vertical gridlines
individually by using the following table methods:

• showHorizontalGrid(True|False)

• showVerticalGrid(True|False)

By default, the height of the rows is determined by the font being used for the table. The default width of a column is
100 pixels. You can override these values using the following table methods:

• setRowHeight(row, height) # Height is in pixels

• setColumnWidth(column, width) # Width is in pixels

The following example illustrates the use of some of these methods:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0,0,0,0,0)
table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnWidth(0, 30)

Figure 1: Leading rows and columns.

Abaqus GUI Toolkit User's Guide52

Rows and columns

Spanning

You can make an item in a header row or column span more than one row or column.

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(2)

Corner item
table.setItemSpan(0, 0, 2, 1)

Span top row item over 2 columns
table.setItemSpan(0, 1, 1, 2)
table.setLeadingRowLabels('Coordinates')
table.setLeadingRowLabels('X\tY', 1)

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setColumnWidth(0, 30)

Figure 1: An example of spanning two header columns.

53

Spanning

Justification

By default, the table displays entries left justified.

You can change how items are justified by using the following table methods:

• setColumnJustify(column, justify)

• setItemJustify(row, column, justify)

If you supply a value of -1 for the column number, the setColumn* methods apply the setting to all columns in
the table.

The following table shows the possible values for the justify argument:

Effect Option flag

Align items to the left side of the cell.AFXTable .LEFT

Center items horizontally.AFXTable .CENTER

Align items to the right side of the cell. AFXTable .RIGHT

Align items to the top of the cell.AFXTable .TOP

Center items vertically.AFXTable .MIDDLE

Align items to the bottom of the cell. AFXTable .BOTTOM

The following example shows how you can change the justification:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnWidth(0, 30)

Center all columns
table.setColumnJustify(-1, AFXTable.CENTER)

Figure 1: Justified column headings.

Abaqus GUI Toolkit User's Guide54

Justification

Editing

By default, no items in a table are editable. To make all items in a table editable, you must specify
AFXTABLE_EDITABLE in the table constructor.

To change the editability of some items in a table, you can use the following table methods:

• setColumnEditable(column, True|False)

• setItemEditable(row, column, True|False)

55

Editing

Types

By default, all items in a table are text items. However, the table widget also supports the BOOL, COLOR, FLOAT,
ICON, INT, LIST, and TEXT items.

The table widget also support the other types of items shown in the following table:

EffectType

Item shows an icon, clicking on it toggles between a true and false icon.BOOL

Item shows a color buttonCOLOR

Item shows text, a text field is used to edit the valueFLOAT

Item shows an icon, it is not editable.ICON

Item shows text, a text field is used to edit the valueINT

Item shows text, a combo box is used to edit the value.LIST

Item shows text, a text field is used to edit the value.TEXT

You can change the type of a column or the type of an individual item using the following table methods:

• setColumnType(column, type)

• setItemType(row, column, type)

Setting the type to FLOAT or INT does not affect data entry to the table; the user may enter anything into these types
of items (this allows for expression evaluation). However, when using the table's getItemIntValue or
getItemFloatValue methods you should be sure that the type of the item that you are reading is INT or FLOAT,
respectively, or the wrong value may be returned. In general, you should make use of the AFXTableKeyword and set
the column types so that the table's values are automatically evaluated correctly.

Abaqus GUI Toolkit User's Guide56

Types

List type

If you want to allow the user to specify a value in a column by selecting from a list of items, you must first set the
column to be of type LIST.
You then create a list and assign it to that column. When the user clicks on an item in that column, the table will display
a noneditable combo box that contains the entries from the list.

The following example illustrates how you can create a combo box within a table cell:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2, None, 0,
 AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
table.setLeadingRows(1)
table.setLeadingRowLabels('Size\tQuantity')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)

listId = table.addList('Small\tMedium\tLarge')
table.setColumnType(0, AFXTable.LIST)
table.setColumnListId(0, listId)

Figure 1: A combo box within a table cell.

You can also add list items that contain icons using the appendListItem method of the table.

icon = createGIFIcon('myIcon.gif')
table.appendListItem(listId, 'Extra large', icon)

When you connect a table keyword to a table that contains lists, you must set the column type of the table keyword
appropriately. If the list contains only text, you can set the column type to AFXTABLE_TYPE_STRING, which sets
the value of the keyword to the text of the item selected in the list. Similarly, if the list contains only icons, you can
set the column type to AFXTABLE_TYPE_INT, which sets the value of the keyword to the index of the item selected
in the list. If the list contains both text and icons, you can use either setting for the column type.

57

List type

Boolean type

If you want to allow the user to specify a value in a table be either True or False, you must set the type of the column
to be BOOL.

The value of a Boolean item is toggled each time you click the item. By default, a blank icon represents False and a
check mark icon represents True. Checkbox style icons for an editable table are shown below. The following example
illustrates how you can include Boolean items in a table:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2, None, 0,
 AFXTABLE_NORMAL)
table.setLeadingRows(1)
table.setLeadingRowLabels('Nlgeom\tStep')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnType(0, table.BOOL)
table.setColumnWidth(0, 50)
table.setColumnJustify(0, AFXTable.CENTER)

Figure 1: Boolean items in a table.

Figure 2: Boolean items in an editable table.

If you do not want to use the default icons, you can set your own true and false icons, as shown in the following
example:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2, None, 0,
 AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
table.setLeadingRows(1)
table.setLeadingRowLabels('State\tLayer')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnType(0, table.BOOL)
table.setColumnWidth(0, 50)
table.setColumnJustify(0, AFXTable.CENTER)

from appIcons import lockedData, unlockedData
trueIcon = FXXPMIcon(getAFXApp(), lockedData)
falseIcon = FXXPMIcon(getAFXApp(), unlockedData)
table.setDefaultBoolIcons(trueIcon, falseIcon)

Abaqus GUI Toolkit User's Guide58

Boolean type

Figure 3: Defining your own true and false icons.

59Abaqus GUI Toolkit User's Guide

Boolean type

Icon type

If you want to display an icon in an item, you must set the type of the column to be ICON and assign the icons to be
shown.

This type of column is not editable by the user. The following example shows how you can include an icon in a table
cell:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2, None, 0,
 AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
table.setLeadingRows(1)
table.setLeadingRowLabels(' \tStatus')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnType(0, table.ICON)
table.setColumnWidth(0, 30)
table.setColumnJustify(0, AFXTable.CENTER)

from appIcons import circleData, squareData
circleIcon = FXXPMIcon(getAFXApp(), circleData)
squareIcon = FXXPMIcon(getAFXApp(), squareData)
table.setItemIcon(1, 0, circleIcon)
table.setItemIcon(2, 0, squareIcon)
table.setItemIcon(3, 0, circleIcon)

Figure 1: Including icons in table cells.

Abaqus GUI Toolkit User's Guide60

Icon type

Color type

If you want to display a color button in a table, you must set the type to COLOR.

If the table is editable, the user can use the color button to change the color via the color selection dialog box. The
color button is a flyout button that can have up to three flyout items, one for a specific color, one for a default color,
and one for an “as-is” color. Refer to the Color Code dialog box in Abaqus/CAE to see examples of how these options
may be used. The options are specified using the flags in the following table:

Effect Option flag

Include only the color flyout item.COLOR_INCLUDE_COLOR_ONLY

Include the “as–is” (=) flyout item.COLOR_INCLUDE_AS_IS

Include the default (*) flyout item.COLOR_INCLUDE_DEFAULT

Include all of the flyout items. COLOR_INCLUDE_ALL

The following example shows how you can display color buttons in a table:

vf = FXVerticalFrame(
 gb, FRAME_SUNKEN|FRAME_THICK, 0,0,0,0, 0,0,0,0)
table = AFXTable(
 vf, 4, 2, 4, 2, None, 0, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
table.setLeadingRows(1)
table.setLeadingRowLabels('Name\tColor')
table.setColumnType(1,AFXTable.COLOR)
table.setColumnColorOptions(
 1, AFXTable.COLOR_INCLUDE_COLOR_ONLY)
table.setItemText(1, 0, 'Part-1')
table.setItemText(2, 0, 'Part-2')
table.setItemText(3, 0, 'Part-3')
table.setItemColor(1,1, '#FF0000')
table.setItemColor(2,1, '#00FF00')
table.setItemColor(3,1, '#0000FF')

Figure 1: Including icons in table cells.

61

Color type

Popup menu

You can add a popup menu to the table by specifying the appropriate flags using the setPopupOptions method.
The menu will be posted when the user clicks mouse button 3 anywhere over the table.

The following options are supported in the popup menu:

Effect Option flag

No popup menu will be displayed.POPUP_NONE (default)

Adds a Cut button to the popup menu.POPUP_CUT

Adds a Copy button to the popup menu.POPUP_COPY

Adds a Paste button to the popup menu.POPUP_PASTE

POPUP_CUT | POPUP_COPY | POPUP_PASTEPOPUP_EDIT

Adds Insert Row Before/After buttons to the popup menu.POPUP_INSERT_ROW

Adds Insert Column Before/After buttons to the popup menu.POPUP_INSERT_COLUMN

Adds Delete Rows button to the popup menu.POPUP_DELETE_ROW

Adds Delete Columns button to the popup menu.POPUP_DELETE_COLUMN

Adds Clear Contents/Table buttons to the popup menu.POPUP_CLEAR_CONTENTS

POPUP_INSERT_ROW | POPUP_INSERT_COLUMN | POPUP_DELETE_ROW |
POPUP_DELETE_COLUMN | POPUP_CLEAR_CONTENTS

POPUP_MODIFY

Adds Read from File button to the popup menu.POPUP_READ_FROM_FILE

Note:

Include POPUP_INSERT_ROW with POPUP_READ_FROM_FILE to allow
automatic expansion of the table for data files with more lines than the current
table definition.

Adds Write to File button to the popup menu.POPUP_WRITE_TO_FILE

POPUP_EDIT | POPUP_MODIFY | POPUP_READPOPUP_ALL

You can also add a custom button to the popup menu by using the table's appendClientPopupItem method, as
shown in Figure 1.

Figure 1: Popup menu options.

Abaqus GUI Toolkit User's Guide62

Popup menu

The following example shows how you can enable various popup menu options:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 3, 4, 3, None, 0,
 AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setColumnWidth(0, 30)

Center all columns
table.setColumnJustify(-1, table.CENTER)

table.setPopupOptions(
 AFXTable.POPUP_CUT|AFXTable.POPUP_COPY
 |AFXTable.POPUP_PASTE
 |AFXTable.POPUP_INSERT_ROW
 |AFXTable.POPUP_DELETE_ROW
 |AFXTable.POPUP_CLEAR_CONTENTS
 |AFXTable.POPUP_READ_FROM_FILE
)
table.appendClientPopupItem('My Button', None, self,
 self.ID_MY_BUTTON)
FXMAPFUNC(self, SEL_COMMAND, self.ID_MY_BUTTON, MyDB.onCmdMyBtn)

63Abaqus GUI Toolkit User's Guide

Popup menu

Colors

Items in a table that display characters have two sets of colors—the normal color and the selected color. In addition,
each item has a background color and a text color.

To change these colors, the table widget provides the following controls:

• Item text color

• Item background color

• Selected item text color

• Selected item background color

• Item color (color button) (The color button is described in Color buttons.)

You can control the text color of items that display characters using the setItemTextColor method. Items that
display characters include strings, numbers, and lists. You can control the text color of these items when they are
selected by using the setSelTextColor method. You can control the background color of any item by using the
setItemBackColor method. You can control the background color of any item when it is selected by using the
setSelBackColor method.

If you do not want the colors to change when the user selects an item, you can set the colors used for items that are
selected to be the same as the colors used for items that are not selected. This approach is shown in the following
example:

itemColor = table.getItemBackColor(1,1)
table.setSelBackColor(itemColor)
itemTextColor = table.getItemTextColor(1,1)
table.setSelTextColor(itemTextColor)

You can set colors using the color name or by specifying RGB values using the FXRGB function. (For a list of valid
color names and their corresponding RGB values, see Colors and RGB values.) Both methods are illustrated in the
following example:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
 0,0,0,0, 0,0,0,0)
table = AFXTable(vf, 4, 2, 4, 2, None, 0,
 AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
table.setLeadingRows(1)
table.setLeadingRowLabels('Name\tDescription')

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setItemTextColor(1,0, 'Blue')
table.setItemTextColor(1,1, FXRGB(0, 0, 255))

table.setItemBackColor(3,0, 'Pink')
table.setItemBackColor(3,1, FXRGB(255, 192, 203))

Figure 1: Setting colors for table items.

Abaqus GUI Toolkit User's Guide64

Colors

Sorting

You can set a column in a table to be sortable.

If a column is set to be sortable and the user clicks on its heading, a graphic will be displayed in the heading that shows
the order of the sort. You must write the code that performs the actual sorting in the table—the table itself provides
only the graphical feedback in the heading cell. For example:

class MyDB(AFXDataDialog):

 def __init(self):

 ...

 # Handle clicks in the table.
 FXMAPFUNC(self, SEL_CLICKED, self.ID_TABLE,
 MyDB.onClickTable)
 ...

 # Create a table.
 vf = FXVerticalFrame(
 parent, FRAME_SUNKEN|FRAME_THICK, 0,0,0,0, 0,0,0,0)
 self.sortTable = AFXTable(vf, 4, 3, 4, 3, self,
 self.ID_TABLE, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)
 self.sortTable.setLeadingRows(1)
 self.sortTable.setLeadingRowLabels('Name\tX\tY')
 self.sortTable.setColumnSortable(1, True)
 self.sortTable.setColumnSortable(2, True)
 ...

 def onClickTable(self, sender, sel, ptr):

 status, x, y, buttons = self.sortTable.getCursorPosition()
 column = self.sortTable.getColumnAtX(x)
 row = self.sortTable.getRowAtY(y)

 # Ignore clicks on table headers.
 if row != 0 or column == 0:
 return

 values = []
 index = 1
 for row in range(1, self.sortTable.getNumRows()):
 values.append((self.sortTable.getItemFloatValue(
 row, column), index))
 index += 1

 values.sort()
 if self.sortTable.getColumnSortOrder(column) == \
 AFXTable.SORT_ASCENDING:
 values.reverse()

 items = []
 for value, index in values:
 name = self.sortTable.getItemValue(index, 0)
 xValue = self.sortTable.getItemValue(index, 1)
 yValue = self.sortTable.getItemValue(index, 2)
 items.append((name, xValue, yValue))

 row = 1

65

Sorting

 for name, xValue, yValue in items:
 self.sortTable.setItemValue(row, 0, name)
 self.sortTable.setItemValue(row, 1, xValue)
 self.sortTable.setItemValue(row, 2, yValue)
 row += 1

Figure 1: Sorting table items.

Abaqus GUI Toolkit User's Guide66

Sorting

Miscellaneous widgets

This section describes a set of miscellaneous widgets in the Abaqus GUI Toolkit that you can use in your
applications.

In this section:

• Separators

• Notes and warnings

• Progress bar

67

Separators

The FXHorizontalSeparator widget and the FXVerticalSeparator widget provide a visual separator to allow separating
elements in a GUI. The Abaqus GUI Toolkit also includes a FXMenuSeparator widget that you can use to separate
items in a menu pane.

For example,

FXLabel(parent, 'This is a label above an FXHorizontalSeparator')
FXHorizontalSeparator(parent)
FXLabel(parent, 'This is a label below an FXHorizontalSeparator')

Figure 1: An example of a horizontal separator from FXHorizontalSeparator.

Abaqus GUI Toolkit User's Guide68

Separators

Notes and warnings

The AFXNote widget provides a convenient way to display notes or warnings in a dialog box.

AFXNote displays either the word “Note” or the word “Warning” in a bold font. AFXNote also aligns messages that
contain more than one line. For example,

AFXNote(parent, 'This is an AFXNote information note\n'
 'that wraps on two lines.')
AFXNote(parent, 'This is an AFXNote warning note!', NOTE_WARNING)

Figure 1: An example of a note and a warning from AFXNote.

69

Notes and warnings

Progress bar

The AFXProgressBar widget provides feedback during a process that takes a long time to complete.

For example,

pb = AFXProgressBar(parent, keyword, tgt,
 LAYOUT_FIX_HEIGHT|LAYOUT_FIX_WIDTH|
 FRAME_SUNKEN|FRAME_THICK|AFXPROGRESSBAR_SCANNER,
 0, 0, 200, 25)

If you want to control the display of the progress bar you can use the percentage or iterator mode and call setProgress
with the appropriate value.

from abaqusGui import *
class MyDB(AFXDataDialog):
 ID_START = AFXDataDialog.ID_LAST
 def __init__(self, form):
 AFXDataDialog.__init__(self, form, 'My Dialog',
 self.OK|self.CANCEL, DECOR_RESIZE|DIALOG_ACTIONS_SEPARATOR)
 FXButton(self, 'Start Something', None, self, self.ID_START)
 FXMAPFUNC(self, SEL_COMMAND, self.ID_START, MyDB.onDoSomething)
 self.scannerDB = ScannerDB(self)
 def onDoSomething(self, sender, sel, ptr):
 self.scannerDB.create()
 self.scannerDB.showModal(self)
 getAFXApp().repaint()
 files = [
 'file_1.txt',
 'file_2.txt',
 'file_3.txt',
 'file_4.txt',
]
 self.scannerDB.setTotal(len(files))
 for i in range(1, len(files)+1):
 self.scannerDB.setProgress(i)
 # Do something with files[i]
 self.scannerDB.hide()
class ScannerDB(AFXDialog):
 def __init__(self, owner):
 AFXDialog.__init__(self, owner, 'Work in Progress',
 0, 0, DIALOG_ACTIONS_NONE)
 self.scanner = AFXProgressBar(self, None, 0,
 LAYOUT_FIX_WIDTH|LAYOUT_FIX_HEIGHT|
 FRAME_SUNKEN|FRAME_THICK|AFXPROGRESSBAR_ITERATOR,
 0, 0, 200, 22)
 def setTotal(self, total):
 self.scanner.setTotal(total)
 def setProgress(self, progress):
 self.scanner.setProgress(progress)

Note: The setProgress method has no effect on a progress bar that uses the scanner mode.

The progress bar has several different modes, as shown in Figure 1.

Abaqus GUI Toolkit User's Guide70

Progress bar

Figure 1:Three modes of the progress bar widget.

71Abaqus GUI Toolkit User's Guide

Progress bar

The create method

Most widgets in the Abaqus GUI Toolkit employ a two-stage creation process.

In the first stage the widget constructor builds the data structures for the widget. In the second stage the toolkit calls
the widget’s create method. The create method constructs all the windows required by the widget so that the
widget can be displayed on the screen.

In most cases the application startup script first calls the constructors of all the widgets required to build the initial
structure of an application by constructing the main window. The script then calls the application object’s create
method. This call traverses the entire widget hierarchy calling the create method of each widget. For more information
and an example script, see Startup script.

If you create widgets after the startup script has called the application’s create method, the create method must
be called on those new widgets; otherwise, they will not be visible on the screen.

If your dialog box is posted by a form or by a procedure, the infrastructure calls the create() method on the dialog
box. However, if you post a dialog box yourself, you must call the create() method on the dialog box before you
call its show() method.

Similarly, if you construct icons that are used after a widget has been created, you must call the create() method
on those icons before using them in a widget. For example, if you want to change a label's icon after it has already
been shown in a dialog box, you must do the following:

1. Construct the new icon.

2. Call the new icon's create() method.

3. Pass the icon to the label using the label's setIcon() method.

Abaqus GUI Toolkit User's Guide72

The create method

Widgets and fonts

When the user starts an application, it sets the default font to be used for all widgets.
On Windows platforms the application obtains the default font from the desktop settings. On Linux platforms the
default font is Helvetica.

The application can issue a command to change its default font. After the command is issued, all widgets created by
the application use the new font. Alternatively, you can change an individual widget’s font by using the setFont
method that is available for many widgets.

You use the getAFXFont method to obtain the current font setting for a widget. Possible fonts are:

• FONT_PROPORTIONAL

• FONT_MONOSPACE

• FONT_BOLD

• FONT_ITALIC

• FONT_SMALL

The following example shows how you can change the default font for all widgets and the font for a particular widget:

Get the current default font.
normalFont = getAFXApp().getNormalFont()

Set the font to bold for subsequently created widgets.
getAFXApp().setNormalFont(getAFXFont(FONT_BOLD))
FXLabel(self, 'Bold font')

Restore the default font.
getAFXApp().setNormalFont(normalFont)

Set the font of a widget after it is created.
l = FXLabel(self, 'Sample text')
l.setFont(getAFXFont(FONT_MONOSPACE))

73

Widgets and fonts

Layout managers

This section describes how to use the various layout managers in the Abaqus GUI Toolkit to arrange widgets in
a dialog box.

In this section:

• About layout managers

• Padding and spacing

• Horizontal and vertical frames

• Vertical alignment for composite children

• General-purpose layout managers

• Row and column layout manager

• Resizable regions

• Rotating regions

• Tab books

• Layout hints

• Layout examples

• Tips for specifying layout hints

Abaqus GUI Toolkit User's Guide74

About layout managers

A layout manager places its children in a certain arrangement in its interior.
Layout managers use a combination of layout hints and packing styles to determine how to place and size their children.
Layout managers in the Abaqus GUI Toolkit calculate relative sizes and relative positions, as opposed to absolute
coordinates. This relative approach accounts automatically for changes such as different font sizes and window resizing.

The following layout managers are available in the Abaqus GUI Toolkit:

FXHorizontalFrame

Arranges widgets horizontally. For more information, see Horizontal and vertical frames.

FXVerticalFrame

Arranges widgets vertically. For more information, see Horizontal and vertical frames.

AFXVerticalAligner

Vertically aligns the first child of its children. For more information, see Vertical alignment for composite

children.

FXPacker

Arranges widgets in a general manner. For more information, see General-purpose layout managers.

AFXDialog

Same capabilities as FXPacker. For more information, see General-purpose layout managers.

FXGroupBox

Same capabilities as FXPacker but allows a titled border. For more information, see General-purpose layout

managers.

FXMatrix

Arranges widgets in rows and columns. For more information, see Row and column layout manager.

FXSplitter

Splits an area vertically or horizontally, and allows you to resize the areas. For more information, see Resizable

regions.

FXSwitcher

Swaps children on top of each other (rotating regions). For more information, see Rotating regions.

FXTabBook

Displays one tab, or one page, of widgets at a time. The user selects the tab to view by clicking a tab button. For
more information, see Tab books.

75

About layout managers

Padding and spacing

Layout managers (and most widgets) provide some default padding so that widgets are spaced apart from each other.

These values are commonly found near the end of the widget's list of arguments. For example,

FXPacker(…, pl, pr, pt, pb, …)

In general, you should accept the default values for padding. However, if you have nested layout managers, you should
set the padding values to zero.

Layout managers also provide spacing between their children. These values are commonly found at the end of the
widget's list of arguments. For example,

FXPacker(…, hs, vs)

In general, you should accept the default values for spacing.

Some “compound” widgets, such as AFXTextField, AFXComboBox, and AFXSpinner, have two padding
values—one for the padding of the internal text field widget and a second for the entire widget that includes a label.
You set the padding for the internal text field widget by passing padding values into the widget constructor. You set
the padding for the entire widget by calling one of the padding methods on the widget; for example, setPadLeft.

Abaqus GUI Toolkit User's Guide76

Padding and spacing

Horizontal and vertical frames

The FXHorizontalFrame and FXVerticalFrame widgets arrange their children in rows or columns, respectively.

For example,

vf = FXVerticalFrame(parent)
FXButton(vf, 'Button 1')
FXButton(vf, 'Button 2')
FXButton(vf, 'Button 3')

Figure 1: An example of a vertical frame from FXVerticalFrame.

77

Horizontal and vertical frames

Vertical alignment for composite children

The AFXVerticalAligner widget is designed to align children that contain multiple children.

AFXVerticalAligner does the following:

1. Finds the maximum width of the first child of each of its children.

2. Sets the width of all the first children to the maximum width.

For example,

va = AFXVerticalAligner(parent)
AFXTextField(va, 16, 'Name:')
AFXTextField(va, 16, 'Address:')
AFXTextField(va, 16, 'Phone Number:')

Figure 1: An example of vertical alignment from AFXVerticalAligner.

Abaqus GUI Toolkit User's Guide78

Vertical alignment for composite children

General-purpose layout managers

The Abaqus GUI Toolkit includes three general-purpose layout managers that have similar layout capabilities.

FXPacker

FXPacker is a general-purpose layout manager.

AFXDialog

AFXDialog provides similar capabilities to FXPacker. As a result, you do not need to provide a top-level layout
manager as the first child in a dialog box; you can use the layout capabilities of the dialog box instead.

FXGroupBox

FXGroupBox provides the same capabilities as FXPacker. In addition, FXGroupBox can display a labeled border
around its children. Abaqus/CAE uses the FRAME_GROOVE flag to produce a thin border around the children
of the group box.

For example,

gb = FXGroupBox(parent, 'Render Style', FRAME_GROOVE)
FXRadioButton(gb, 'Wireframe')
FXRadioButton(gb, 'Filled')
FXRadioButton(gb, 'Shaded')

Figure 1: An example of a group box with a labeled border from FXGroupBox.

79

General-purpose layout managers

Row and column layout manager

The FXMatrix widget arranges its children in rows and columns.

You can perform the layout row-wise using the default value of the opts argument (MATRIX_BY_ROWS) or
column-wise by setting opts=MATRIX_BY_COLUMNS. If you specify opts=MATRIX_BY_ROWS, the matrix
will create the specified number of rows and as many columns as are needed to accommodate all its children. Conversely,
if you specify opts=MATRIX_BY_COLUMNS, the matrix will create the specified number of columns and as many
rows as are needed to accommodate all its children.

For example, using the default opts=MATRIX_BY_ROWS setting,

m = FXMatrix(parent, 2)
FXButton(m, 'Button 1')
FXButton(m, 'Button 2')
FXButton(m, 'Button 3')
FXButton(m, 'Button 4')
FXButton(m, 'Button 5')
FXButton(m, 'Button 6')

Figure 1: An example of a matrix with two rows from FXMatrix.

Abaqus GUI Toolkit User's Guide80

Row and column layout manager

Resizable regions

The FXSplitter widget splits an area vertically or horizontally.

The user can drag the cursor on the region between the areas and resize the areas. For example,

sp = FXSplitter(parent,
 LAYOUT_FILL_X|LAYOUT_FIX_HEIGHT|SPLITTER_VERTICAL,
 0,0,0,100)
hf1 = FXHorizontalFrame(sp, FRAME_SUNKEN|FRAME_THICK)
FXLabel(hf1, 'This is area 1')
hf2 = FXHorizontalFrame(sp, FRAME_SUNKEN|FRAME_THICK)
FXLabel(hf2, 'This is area 2')

Figure 1: An example of resizable areas laid out vertically by FXSplitter.

81

Resizable regions

Rotating regions

The FXSwitcher widget manages children that are positioned on top of each other.

FXSwitcher allows you to select which child should be shown by either sending it a message or calling its setCurrent
method. When sending a message, you must set the message ID to FXSwitcher.ID_OPEN_FIRST for the first child.
You must then increment the message ID from that value for the subsequent children, as shown in the following
example. For more information on messages, see Targets and messages. To use the setCurrent method, you should
provide the zero-based index of the child that you want to display. For example, to display the first child, you should
call the setCurrent method with an index value of zero.

For example,

sw = FXSwitcher(parent)
FXRadioButton(hf, 'Option 1', sw, FXSwitcher.ID_OPEN_FIRST)
FXRadioButton(hf, 'Option 2', sw, FXSwitcher.ID_OPEN_FIRST+1)
hf1 = FXHorizontalFrame(sw)
FXButton(hf1, 'Button 1')
FXButton(hf1, 'Button 2')
hf2 = FXHorizontalFrame(sw)
FXButton(hf2, 'Button 3')
FXButton(hf2, 'Button 4')

Figure 1: An example of a rotating region from FXSwitcher.

Abaqus GUI Toolkit User's Guide82

Rotating regions

Tab books

The FXTabBook widget uses “tab items” to control the display of its “pages” one at a time.

FXTabBook expects that its odd-numbered children are FXTabItems and its even-numbered children are some type
of layout manager. The layout manager contains whatever widgets are to be displayed in that page. Clicking a tab item
will show the layout manager (and all its children) associated with that tab while hiding all the other layout managers.
Typically, a horizontal or vertical frame is used for the layout manager, and its frame options are set to FRAME_RAISED
| FRAME_THICK to provide a standard border.

You can nest tab books to provide tabs within tabs, as shown in the following example:

tabBook1 = FXTabBook(self, None, 0, LAYOUT_FILL_X)
FXTabItem(tabBook1, 'Tab Item 1')
tab1Frame = FXHorizontalFrame(tabBook1,
 FRAME_RAISED|FRAME_SUNKEN)
FXLabel(tab1Frame, '
 This is the region controlled by Tab Item 1.')
FXTabItem(tabBook1, 'Tab Item 2')
tab2Frame = FXHorizontalFrame(tabBook1, FRAME_RAISED|FRAME_SUNKEN)

tabBook2 = FXTabBook(tab2Frame, None, 0,
 TABBOOK_LEFTTABS|LAYOUT_FILL_X)
FXTabItem(tabBook2, 'Subtab Item 1', None, TAB_LEFT)
subTab1Frame = FXHorizontalFrame(tabBook2,
 FRAME_RAISED|FRAME_SUNKEN)
AFXNote(subTab1Frame,
 'This is a note\nin sub-tab item 1\nthat extends\n' \
 'over several\nlines.')
FXTabItem(tabBook2, 'Subtab Item 2', None, TAB_LEFT)
subTab2Frame = FXHorizontalFrame(tabBook2,
 FRAME_RAISED|FRAME_SUNKEN)

Figure 1 shows an example of nested tab books.

83

Tab books

Figure 1: An example of two subtab pages.

Abaqus GUI Toolkit User's Guide84

Tab books

Layout hints

The FXPacker, FXTopWindow, and FXGroupBox widgets accept the layout hints in their children.

The following layout hints are accepted:

LAYOUT_SIDE_TOP

Attaches a widget to the top side of the cavity. LAYOUT_SIDE_TOP is the default layout hint.

LAYOUT_SIDE_BOTTOM

Attaches a widget to the bottom side of the cavity.

LAYOUT_SIDE_LEFT

Attaches a widget to the left side of the cavity.

LAYOUT_SIDE_RIGHT

Attaches a widget to the right side of the cavity.

You should specify only one of the LAYOUT_SIDE_* hints per child. The top and bottom hints effectively reduce
the height of the available space remaining to place other children. The left and right hints effectively reduce the width
of the available space remaining to place other children.

All layout managers support the following layout hints:

• LAYOUT_LEFT (default) and LAYOUT_RIGHT. The layout manager places the widget on the left or right side
of the space remaining in the container.

• LAYOUT_TOP (default) and LAYOUT_BOTTOM. The layout manager places the widget on the top or bottom
side of the space remaining in the container.

• LAYOUT_CENTER_X and LAYOUT_CENTER_Y. The layout manager centers the widget in the X- or Y-direction
in the parent. The manager adds extra spacing around the widget to place it at the center of the space available to
it. The widget's size will be its default size unless you specify LAYOUT_FIX_WIDTH or LAYOUT_FIX_HEIGHT.

• LAYOUT_FILL_X and LAYOUT_FILL_Y. You can specify either none, one, or both of these layout hints.
LAYOUT_FILL_X causes the parent layout manager to stretch or to shrink the widget to accomodate the available
space. If you place more than one child with this option side by side, the manager subdivides the available space
proportionally to the children's default size. LAYOUT_FILL_Y has the identical effect in the vertical direction.

FXPacker, FXTopWindow, and FXGroupBox must use LAYOUT_LEFT and LAYOUT_RIGHT with
LAYOUT_SIDE_TOP and LAYOUT_SIDE_BOTTOM. The Abaqus GUI Toolkit ignores hints if they do not make
sense; for example, FXHorizontalFrame ignores LAYOUT_TOP and LAYOUT_BOTTOM. Similar rules apply for
the other hints.

The majority of widgets in the Abaqus GUI Toolkit have width and height arguments in their constructors. In most
cases you can accept the default value of zero for these arguments, which allows the application to determine the proper
size of the widget. However, in some cases you will need to set specific values for the width and height of a widget.
To set the width and height, you must pass the LAYOUT_FIX_WIDTH and LAYOUT_FIX_HEIGHT flags to the
options argument of the widget. If you do not pass these flags to the options argument, the toolkit will ignore the values
that you specified for the width and height.

Layout hints are described in detail in Layout hints.

85

Layout hints

Layout examples

The following examples create three buttons, one at a time, using the default layout hints.

As each button is created, the figures show the effect on the space remaining in the layout cavity.

Example 1

The first example starts by creating a single button on the left side of the cavity. The default value for the vertical
position is LAYOUT_TOP, so the example places the button on the left side and at the top of the available space.

gb = FXGroupBox(parent, '')
FXButton(gb, 'Button 1', opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

Figure 1: Creating a button on the left side and at the top of the layout cavity.

The following statement adds a second button on the left side at the top of the available space:

FXButton(gb, 'Button 2', opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

Figure 2: Adding a second button on the left side at the top of the layout cavity.

The following statement adds a third button on the left side at the top of the available space:

FXButton(gb, 'Button 3',
 opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

Figure 3: Adding a third button on the left side at the top of the layout cavity.

Figure 4 shows the final configuration of the three buttons.

Figure 4:The final configuration of the buttons.

Abaqus GUI Toolkit User's Guide86

Layout examples

Example 2

The second example illustrates how you can use nondefault layout hints. The example starts by using the default
hints to position a button on top of the available space and on the left.

gb = FXGroupBox(p,'')
FXButton(gb,'Button 1')

Figure 5: Creating a button on the left side and at the top of the layout cavity.

The example then positions a second button on the right side on the bottom of the layout cavity.

FXButton(gb, 'Button 2',
 opts=LAYOUT_SIDE_BOTTOM|LAYOUT_RIGHT|BUTTON_NORMAL)

Figure 6: Adding a second button on the right side at the bottom of the layout cavity.

Finally, the example places a third button on the bottom of the available space and centered in the X-direction.

FXButton(gb, 'Button 3',
 opts=LAYOUT_SIDE_BOTTOM|LAYOUT_CENTER_X|BUTTON_NORMAL)

Figure 7: Adding a third button in the center at the bottom of the layout cavity.

Figure 8 shows the final configuration of the three buttons.

87Abaqus GUI Toolkit User's Guide

Layout examples

Figure 8:The final configuration of the three buttons.

Abaqus GUI Toolkit User's Guide88

Layout examples

Tips for specifying layout hints

This section provides tips for specifying layout hints supported by the layout managers in the Abaqus GUI Toolkit.

• Do not over specify layout hints. In many cases the default values are what you want, and you do not need to specify
the hints.

• Think in terms of simple rows and columns, and use horizontal or vertical frames whenever possible.

• To avoid building up excessive padding, set the padding to zero in nested layout managers.

• Layout hints are described in detail in Layout hints.

89

Tips for specifying layout hints

Dialog boxes

This section describes the dialog boxes that you can create using the Abaqus GUI Toolkit.

In this section:

• About dialog boxes

• Modal versus modeless

• Showing and hiding dialog boxes

• Message dialog boxes

• Custom dialog boxes

• Data dialog boxes

• Common dialog boxes

Abaqus GUI Toolkit User's Guide90

About dialog boxes

The following general types of dialog boxes are available in the Abaqus GUI Toolkit: message, custom, data, and
common.

Message dialog boxes

Message dialog boxes allow you to post error, warning, or informational messages.

Custom dialog boxes

Custom dialog boxes allow you to build any custom interface. However, you must supply the infrastructure
needed to make the dialog box behave as required.

Data dialog boxes

Data dialog boxes provide support for dialog boxes in which users enter data. Data dialog boxes are designed
to supply user inputs to forms, which automatically issue commands. For more information, see Form modes.

Common dialog boxes

Common dialog boxes are dialog boxes that provide standard functionality commonly found in many applications.
The File Selection dialog box is a typical common dialog box.

These dialog boxes, along with other details related to dialog box construction and behavior, are described in this
chapter.

91

About dialog boxes

Modal versus modeless

A dialog box can be either modal or modeless.

Modal

A modal dialog box prevents interaction with the rest of the application until the user dismisses the dialog box.

Modeless

A modeless dialog box allows the user to interact with other parts of the GUI while the dialog box is posted. In
Abaqus/CAE all secondary dialog boxes except for tips should be modal dialog boxes.

A dialog box itself is not defined as modal or modeless—the behavior is obtained from the method used to post the
dialog box.

For dialog boxes posted by forms, you can set the modal behavior by calling the form's setModal method and
providing an argument of either True or False. If you call setModal with True as its argument, the form will post
the next dialog box modally. You can call the setModal method several times within one form if you need to change
the modal behavior between the various dialog boxes managed by the form.

For dialog boxes that you post yourself, you can use the showModal method instead of the show method described
in the next section. File/Directory selector includes an example that uses the showModal method.

Abaqus GUI Toolkit User's Guide92

Modal versus modeless

Showing and hiding dialog boxes

Dialog boxes have show and hide methods that post or unpost the dialog box from the screen.

In most cases you do not need to call these methods because the mode infrastructure calls them for you. However, you
may want to write your own show and hide methods to perform some special processing that will be executed just
before your application posts or unposts the dialog box. For example, you can register and unregister queries inside
the show and hide methods. You must call the base class versions of the show and hide methods, or the methods
will not behave as expected. For example, in your dialog class code you could add the following lines:

def show(self):

 # Do some special processing here.
 ...

 # Call base class method.
 AFXDataDialog.show(self)

def hide(self):

 # Do some special processing here.
 ...

 # Call base class method.
 AFXDataDialog.hide(self)

93

Showing and hiding dialog boxes

Message dialog boxes

The AFXMessageDialog class extends the FXMessageDialog class by enforcing certain characteristics of the
dialog box; for example, the window title and message symbol.
These characteristics make message dialog boxes in Abaqus/CAE consistent and easy to use. This section
describes the message dialog boxes that you can create with the Abaqus GUI Toolkit.

In this section:

• Error dialog boxes

• Warning dialog boxes

• Information dialog boxes

• Specialized message dialog boxes

Abaqus GUI Toolkit User's Guide94

Error dialog boxes

You post error dialog boxes in response to a failure condition that the application cannot resolve.

Error dialog boxes have the following characteristics:

• The application name is displayed in their title bar.

• An error symbol is displayed on the left side of the dialog box.

• The action area contains only a Dismiss button.

• They are modal.

For example:

mainWindow = getAFXApp().getAFXMainWindow()
showAFXErrorDialog(mainWindow, 'An invalid value was supplied.')

Figure 1: An example of an error dialog box from showAFXErrorDialog.

95

Error dialog boxes

Warning dialog boxes

You post warning dialog boxes in response to a condition that the application needs user assistance to resolve.

Warning dialog boxes have the following characteristics:

• The application name is displayed in their title bar.

• A warning symbol is displayed on the left side of the dialog box.

• The action area may contain Yes, No, and Cancel buttons.

• They are modal.

To find out which button in the warning dialog box was pressed by the user, you must pass the warning dialog box a
target and a selector and you must create a message map entry in the form to handle that message. In your message
handler you can query the warning dialog box using the getPressedButtonId method. The following examples
illustrate how to create a warning dialog box:

You must define an ID in the form class:

from abaqusGui import *
class MyForm(AFXForm):
 [
 ID_WARNING,
] = range(AFXForm.ID_LAST, AFXForm.ID_LAST+1)

 def __init__(self, owner):

 # Construct the base class.
 #
 AFXForm.__init__(self, owner)

 FXMAPFUNC(self, SEL_COMMAND, self.ID_WARNING,
 MyForm.onCmdWarning)

 ...

 def doCustomChecks(self):

 if <someCondition>:
 showAFXWarningDialog(self.getCurrentDialog(),
 'Save changes made in the dialog?',
 AFXDialog.YES | AFXDialog.NO,
 self, self.ID_WARNING)
 return False

 return True

 def onCmdWarning(self, sender, sel, ptr):

 if sender.getPressedButtonId() == \
 AFXDialog.ID_CLICKED_YES:
 self.issueCommands()
 elif sender.getPressedButtonId() == \
 AFXDialog.ID_CLICKED_NO:
 self.deactivate()

Abaqus GUI Toolkit User's Guide96

Warning dialog boxes

Figure 1: An example of a warning dialog box from showAFXWarningDialog.

There are two other variations of warning dialog boxes:

• showAFXDismissableWarningDialog

• showAFXItemsWarningDialog

The dialog box created by showAFXDismissableWarningDialog contains a check button that allows the user to specify
whether the application should continue to post the warning dialog box each time the warning occurs. You can check
the state of the button by calling the getCheckButtonState method of the warning dialog.

The dialog box created by showAFXItemsWarningDialog contains a scrolled list of items to be displayed to the user.
The list prevents the dialog box from becoming too tall when it is displaying a long list of items.

97Abaqus GUI Toolkit User's Guide

Warning dialog boxes

Information dialog boxes

You post information dialog boxes to provide an explanatory message.

Information dialog boxes have the following characteristics:

• The application name is displayed in their title bar.

• An information symbol is displayed on the left side of the dialog box.

• The action area contains only a Dismiss button.

• They are modal.

For example,

mainWindow = getAFXApp().getAFXMainWindow()
showAFXInformationDialog(mainWindow,
 'This is an information dialog.')

Figure 1: An example of an information dialog box from showAFXInformationDialog.

Abaqus GUI Toolkit User's Guide98

Information dialog boxes

Specialized message dialog boxes

If you need more flexibility than the standard message dialog boxes, you must derive a new dialog box from AFXDialog
and provide the specialized handling.

For more information, see Custom dialog boxes.

99

Specialized message dialog boxes

Custom dialog boxes

AFXDialog is the base class for the other dialog box classes in the toolkit.
If none of the other dialog box classes suit your needs, you must derive your dialog box from AFXDialog and
provide most of the dialog processing yourself. This section describes how you can use AFXDialog to create
custom dialog boxes.

In this section:

• About custom dialog boxes

• Constructors

• Sizing and location

• Action area

• Custom action area button names

• Action button handling

Abaqus GUI Toolkit User's Guide100

About custom dialog boxes

AFXDialog is the base class for the other dialog box classes in the toolkit.
If none of the other dialog box classes suit your needs, you must derive your dialog box from AFXDialog and provide
most of the dialog box processing yourself.

The AFXDialog class extends the FXDialog class by providing the following features:

• Button flags that allow the automatic construction of action area buttons.

• Option flags that control the placement of the action area. Option flags also determine whether to include a separator
between the action area and the rest of the dialog box.

• Message IDs for the various action area commit semantics.

• Methods to add action area buttons manually.

• Automatic handling of the No, Cancel, and Dismiss buttons. Automatic handling is also provided for the Close

(X) button on the right hand side of the dialog box's title bar.

• Automatic destruction of the dialog box after it is unposted.

See Action area for more details.

101

About custom dialog boxes

Constructors

There are three prototypes of the AFXDialog constructor.

The difference between the three prototypes is the occluding behavior of the dialog box, as illustrated in the following
examples:

• The following statement creates a dialog box that always occludes the main window when overlapping with the
main window:

AFXDialog(title, actionButtonIds=0,
 opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that always occludes its owner widget (usually a dialog box) when
overlapping with the widget:

AFXDialog(owner, title, actionButtonIds=0,
 opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that can be occluded by any other windows in the application:

AFXDialog(app, title, actionButtonIds=0,
 opts = DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

When you construct a dialog box, you will start by deriving from the AFXDialog class. The first thing you should do
in the constructor body is call the base class constructor to properly initialize the dialog. Then, you would build the
contents of your dialog by adding widgets. For example:

class MyDB(AFXDialog):

 # My constructor
 def __init__(self):

 # Call base class constructor
 AFXDialog.__init__(self, 'My Dialog', self.DISMISS)

 # Add widgets next...

Abaqus GUI Toolkit User's Guide102

Constructors

Sizing and location

By default, the user cannot resize a dialog box. However, if a dialog box contains text fields or lists that can be stretched
to show more entries, the user should be allowed to resize the dialog box.

Resizing can be allowed by specifying the DECOR_RESIZE flag in the dialog box constructor.

Note: Dialog boxes created by AFXDialog do not support minimizing and maximizing; they ignore these flags
if they are included in the dialog box constructor.

You should never specify the size and location of the dialog box in its constructor. The Abaqus GUI Toolkit will place
the dialog box on the screen and determine its proper size.

103

Sizing and location

Action area

The action area of a dialog box contains buttons, such as OK and Cancel. These buttons allow the user to commit
values from the dialog box, to close the dialog box, or to perform some other action.

AFXDialog supports the automatic creation of an action area and its buttons through the use of bit flags in the dialog
box constructor. You can use the flags described in Table 1 to include standard action area buttons.

Table 1: Action area flags.

SemanticsLabelMessage IDButton flag

Commit the values in the dialog box, process them,
and then hide the dialog box.

OKAFXDialog.ID_CLICKED_OKAFXDialog.OK

Commit the values in the dialog box, hide it, and
continue collecting input from the user in another
dialog box or prompt.

Continue…AFXDialog.ID_CLICKED_CONTINUEAFXDialog.CONTINUE

Same as OK, except the dialog box is not hidden.ApplyAFXDialog.ID_CLICKED_APPLYAFXDialog.APPLY

Reset the values in the dialog box to their defaults.DefaultsAFXDialog.ID_CLICKED_DEFAULTSAFXDialog.DEFAULTS

Invoke the affirmative action in response to the
question posed by the dialog box.

YesAFXDialog.ID_CLICKED_YESAFXDialog.YES

Invoke the negative action in response to the
question posed by the dialog box.

NoAFXDialog.ID_CLICKED_NOAFXDialog.NO

Do not commit the values in the dialog box; just
hide the dialog box. Optionally, for the

CancelAFXDialog.ID_CLICKED_CANCELAFXDialog.CANCEL

AFXDataDialog a bailout may be posted if the user
has changed any values since the last commit.

Hide the dialog box without taking any other action.DismissAFXDialog.ID_CLICKED_DISMISSAFXDialog.DISMISS

AFXDialog also supports the following options that determine the location of the action area:

DIALOG_ACTIONS_BOTTOM

This option places the action area at the bottom of the dialog box and is the default option.

DIALOG_ACTIONS_RIGHT

This option places the action area on the right side of the dialog box.

DIALOG_ACTIONS_NONE

This option does not create an action area; for example, in a toolbox dialog box.

You can also specify whether a separator should be placed between the action area and the rest of the dialog box by
including the following flag in the options:

DIALOG_ACTIONS_SEPARATOR

The style in Abaqus/CAE is to omit a separator if there is already delineation between the action area and the
rest of the dialog box; for example, a frame that stretches across the entire width of the dialog box along the
bottom of the dialog box. The following statements illustrate how you define an action area in a dialog box with
a separator:

class ActionAreaDB(AFXDialog):

Abaqus GUI Toolkit User's Guide104

Action area

 def __init__(self):

 AFXDialog.__init__(self, 'Action Area Example1',
 self.OK|self.APPLY|self.CANCEL,
 DIALOG_ACTIONS_SEPARATOR)

 FXLabel(self, 'Standard action area example dialog.')

Figure 1: An example of a standard action area.

105Abaqus GUI Toolkit User's Guide

Action area

Custom action area button names

You can use the se the appendActionButton method to add action area buttons.

The flags in Table 1 cover all the semantics you might need in a dialog box. As a result, there is no need for any
additional custom flags; however, there may be cases where you want to use a different label for one of the standard
actions. To use a different label for one of the standard actions, you do not specify any button flags in the constructor
arguments; you use the appendActionButton method to add your own action area buttons. The
appendActionButton method has two prototypes:

appendActionButton(buttonId)
appendActionButton(text, tgt, sel)

The first version of the prototype creates a standard action area button as defined in Table 1. The second version of
the prototype creates a button whose label is given as the text argument. In addition, the second version allows you to
set the target and selector so that you can catch messages from this button and act accordingly. The following statements
show how you can create custom action area buttons:

class ActionAreaDB(AFXDialog):
 def __init__(self):

 AFXDialog.__init__(self, 'Action Area Example 2',
 0, DIALOG_ACTIONS_SEPARATOR)
 FXLabel(self, 'Custom action area example dialog.')
 self.appendActionButton('Highlight', self,
 self.ID_CLICKED_APPLY)
 self.appendActionButton(self.CANCEL)

Figure 1: An example of a custom action area.

Abaqus GUI Toolkit User's Guide106

Custom action area button names

Action button handling

AFXDialog and AFXDataDialog provide some automatic handling of the messages that are sent when a button in the
action area is clicked. If you want to perform some actions other than those provided by the dialog box, you must catch
the messages sent by the action area buttons and write your own message handler.

For example, if you want to take an action when the user clicks the Apply button in the dialog box, you must catch
the (ID_CLICKED_APPLY | SEL_COMMAND) message and map it to a message handler in your dialog box. For
more information, see Targets and messages.

107

Action button handling

Data dialog boxes

A data dialog box is a dialog box in which data are collected from the user. In contrast, a message dialog box
displays only a message and a toolbox just holds buttons. This section describes how you can create a data dialog
box.

In this section:

• About data dialog boxes

• Constructors

• Bailout

• Constructor contents

• Transitions

• Updating your GUI

• Action area

Abaqus GUI Toolkit User's Guide108

About data dialog boxes

A data dialog box is a dialog box in which data are collected from the user.
In contrast, a message dialog box displays only a message, and a toolbox just holds buttons. AFXDataDialog is designed
to be used in conjunction with a mode to gather data from the user. The data are then processed in a command. You
should use AFXDataDialog if you need to issue a command. You should also use AFXDataDialog if the dialog box
belongs to a module or nonpersistent toolset so that the GUI infrastructure can properly manage the dialog box when
the user switches modules.

The AFXDataDialog class is derived from AFXDialog and provides the following additional features:

• A bailout mechanism.

• Standard action area button behavior designed to work with a form.

• Keyword usage.

• Transitions that define GUI state changes in the dialog box.

109

About data dialog boxes

Constructors

There are two prototypes of the AFXDataDialog constructor.

The difference between the two prototypes is the occluding behavior of the dialog box, as illustrated in the following
examples:

• The following statement creates a dialog box that always occludes the main window when overlapping with the
main window:

AFXDataDialog(mode, title, actionButtonIds=0,
 opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that always occludes its owner widget (usually a dialog box) when
overlapping with the widget.

AFXDataDialog(mode, owner, title, actionButtonIds=0,
 opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

When you construct a dialog box, you will start by deriving from the AFXDataDialog class. The first thing you should
do in the constructor body is call the base class constructor to properly initialize the dialog. Then, you would build the
contents of your dialog by adding widgets. For example:

class MyDB(AFXDataDialog):

 # My constructor
 def __init__(self):

 # Call base class constructor
 AFXDataDialog.__init__(self, form, 'My Dialog',
 self.OK|self.CANCEL)

 # Add widgets next...

When a dialog box is unposted, it is removed from the screen. By default, a dialog box is deleted when it is unposted.
Deleting a dialog box removes both the GUI resources associated with the dialog box and the dialog box's data structures.
In contrast, you can choose to destroy a dialog box when it is unposted. Destroying a dialog box removes only the GUI
resources and retains the dialog box's data structures.

If there is some dialog box GUI state that you want to retain between postings of the dialog box, you should specify
that the dialog box is destroyed only when it is unposted. Therefore, when the dialog box is posted again, it retains its
data structures and the old state is still intact. For example, assume that your dialog box contains a table and the user
resizes one of the columns of the table. If you only destroy the dialog box when it is unposted, the table column sizes
will be remembered the next time the dialog box is posted. To specify that a dialog box should be destroyed when
unposted, add the DIALOG_UNPOST_DESTROY flag to the dialog box constructor's opts argument.

Abaqus GUI Toolkit User's Guide110

Constructors

Bailout

AFXDataDialog supports automatic bailout handling through the specification of a bit flag in the dialog box constructor.

If you request bailout processing and the user changes some values in the dialog box and presses Cancel, the application
posts a standard warning dialog box. The following statement requests bailout processing:

AFXDataDialog.__init__(self, form, 'Create Part',
 self.OK|self.CANCEL,
 DIALOG_ACTIONS_SEPARATOR|DATADIALOG_BAILOUT)

Figure 1: An example of a bailout.

After the standard warning dialog box has been posted, the behavior is as follows:

• If the user clicks Yes from the standard warning dialog box, the data dialog box will be processed as if the user
had originally pressed OK.

• If the user clicks No from the standard warning dialog box, the data dialog box will be unposted without any
processing.

• If the user clicks Cancel from the standard warning dialog box, the data dialog box will remain posted and no
action will be taken.

111

Bailout

Constructor contents

You use the constructor of the dialog box to create the widgets that will appear in the dialog box.

To keep the GUI up-to-date with the application state and vice versa, you use keywords as targets of widgets. Keywords
are defined as members of a form, and the form is passed to the dialog box as a dialog box constructor argument. For
more information, see AFXKeywords. The following script shows how you can use keywords to construct a dialog
box. Figure 1 shows the Graphics Options dialog box generated by the example script.

Figure 1: Graphics Options data dialog box.

class GraphicsOptionsDB(AFXDataDialog):

 #~~
 def __init__(self, form):

 AFXDataDialog.__init__(self, form, 'Graphics Options',
 self.OK|self.APPLY|self.DEFAULTS|self.CANCEL)

 # Hardware frame
 #
 gb = FXGroupBox(self, 'Hardware',
 FRAME_GROOVE|LAYOUT_FILL_X)
 hardwareFrame = FXHorizontalFrame(gb,
 0, 0,0,0,0, 0,0,0,0)
 FXLabel(hardwareFrame, 'Driver:')
 FXRadioButton(hardwareFrame, 'OpenGL',
 form.graphicsDriverKw, OPEN_GL.getId())
 FXRadioButton(hardwareFrame, 'X11',
 form.graphicsDriverKw, X11.getId())
 FXCheckButton(gb, 'Use double buffering',
 form.doubleBufferingKw)
 displayListBtn = FXCheckButton(gb, 'Use display lists',
 form.displayListsKw)

 # View Manipulation frame
 #
 gb = FXGroupBox(self, 'View Manipulation',
 FRAME_GROOVE|LAYOUT_FILL_X)
 hf = FXHorizontalFrame(gb, 0, 0,0,0,0, 0,0,0,0)
 FXLabel(hf, 'Drag mode:')
 FXRadioButton(hf, 'Fast (wireframe)', form.dragModeKw,

Abaqus GUI Toolkit User's Guide112

Constructor contents

 FAST.getId())
 FXRadioButton(hf, 'As is', form.dragModeKw,
 AS_IS.getId())
 FXCheckButton(gb, 'Auto-fit after rotations',
 form.autoFitKw)

113Abaqus GUI Toolkit User's Guide

Constructor contents

Transitions

Transitions provide a convenient way to change the GUI state in a dialog box. Transitions are used to stipple widgets
or to rotate regions when some other control in the dialog box is activated.
If the behavior in your dialog box can be described in terms of simple transitions, you can use the addTransition
method to produce the state changes.

Transitions compare the value of a keyword with a specified value. If the operator condition is met, a message is sent
to the specified target object. Transitions have the following prototype:

addTransition(keyword,
operator, value, tgt, sel, ptr)

For example, when the user selects Wireframe as the render style in the Part Display Options dialog box, Abaqus/CAE
does the following:

• Stipples the Show dotted lines in hidden render style button.

• Stipples the Show edges in shaded render style button.

• Checks the Show silhouette edges button.

These transitions can be described as follows:

• If the value of the render style keyword equals WIREFRAME, send the Show dotted lines... button an ID_DISABLE
message.

• If the value of the render style keyword equals WIREFRAME, send the Show edges in shaded... button an
ID_DISABLE message.

• If the value of the render style keyword equals WIREFRAME, send the Show silhouette edges button an
ID_ENABLE message.

You can write these transitions with the Abaqus GUI Toolkit as follows:

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
 WIREFRAME.getId(), showDottedBtn,
 MKUINT(FXWindow.ID_DISABLE, SEL_COMMAND), None)

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
 WIREFRAME.getId(), showEdgesBtn,
 MKUINT(FXWindow.ID_DISABLE, SEL_COMMAND), None)

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
 WIREFRAME.getId(), showSilhouetteBtn,
 MKUINT(FXWindow.ID_ENABLE, SEL_COMMAND), None)

You can also pass additional user data to the object using the last argument of the addTransition method. Figure

1 shows an example that uses transitions to control how the application stipples widgets.

Abaqus GUI Toolkit User's Guide114

Transitions

Figure 1: An example of using transitions to control how the application stipples widgets.

115Abaqus GUI Toolkit User's Guide

Transitions

Updating your GUI

If the GUI behavior of your dialog box cannot be described in terms of simple transitions (for example, if you need to
stipple a button based on the setting of two other buttons), you can use the processUpdates method to update your
GUI.

The processUpdates method is called during each GUI update cycle, so you should not do anything that is time
consuming in this method. Generally, you should perform tasks such as enabling and disabling, or showing and hiding
widgets. For example:

def processUpdates(self):

 if self.form.kw1.getValue() == 1 and \
 self.form.kw2.getValue() == 2:

 self.btn1.disable()
 else:
 self.btn1.enable()

If the tasks you need to perform are time consuming, you should write your own message handler that is invoked only
upon some specific user action. For example, if you need to scan an ODB for valid data, you could make the commit
button of the dialog send a message to your dialog box. That message would invoke your message handler that does
the scanning. That way, the scanning occurs only when the user commits the dialog, not during every GUI update
cycle. For more information on message handlers, see Targets and messages.

Abaqus GUI Toolkit User's Guide116

Updating your GUI

Action area

The AFXDataDialog class provides standard handling for all the buttons that can appear in the action area.

Table 1 shows the action that the application takes when each of these buttons is clicked.

Table 1: Action area buttons.

ActionButton

Send the form an (ID_COMMIT, SEL_COMMAND) message and its button ID.OK

Send the form an (ID_COMMIT, SEL_COMMAND) message and its button ID.Apply

Send the form an (ID_GET_NEXT, SEL_COMMAND) message.Continue

Send the form an (ID_SET_DEFAULTS, SEL_COMMAND) message.Defaults

Check for bailout, send the form an (ID_DEACTIVATE, SEL_COMMAND) message.Cancel

Perform the Cancel button action.“x” in title bar

If your dialog has more than one “apply” button, you can handle this by routing messages from the button to the apply
message handler in the form. In the form, you can use the getPressedButtonId method to determine which
button was pressed and take the appropriate action. For example, in your dialog constructor:

self.appendActionButton('Plot', self, self.ID_PLOT)
FXMAPFUNC(self, SEL_COMMAND, self.ID_PLOT,
 AFXDataDialog.onCmdApply)
self.appendActionButton('Highlight', self, self.ID_HIGHLIGHT)
FXMAPFUNC(self, SEL_COMMAND, self.ID_HIGHLIGHT,
 AFXDataDialog.onCmdApply)

and in your form code:

def doCustomChecks(self):

 if self.getPressedButtonId() == self.getCurrentDialog().ID_PLOT:
 # Enable plot commands, disable highlight commands
 else:
 # Enable highlight commands, disable plot commands
 return True

117

Action area

Common dialog boxes

The Abaqus GUI Toolkit provides some pre-built dialog boxes for handling common operations. This section
provides details on how to use these dialog boxes.

In this section:

• File/Directory selector

• Print dialog box

• Color selector dialog box

Abaqus GUI Toolkit User's Guide118

File/Directory selector

The File Selector dialog box is used to gather a file or directory name from the user.

It has the following characteristics:

• The title bar can be set.

• The file filters can be set.

• The following error checking is provided:

- Check to see if the file exists.

- Check for proper permissions.

- Check to see if the selection is a file.

• Allows read-only access.

• Accepts keywords and a target.

The file selection dialog box has the following prototypes:

AFXFileSelectorDialog(form, title, fileNameKw,
 readOnlyKw, opts, patterns, patternIndexTgt)

AFXFileSelectorDialog(parent, title, fileNameKw,
 readOnlyKw, opts, patterns, patternIndexTgt)

You use the first constructor when you have a form associated with the dialog box that issues a command; for example,
the dialog box that appears when you click File->Open Database. You use the second constructor when the dialog
box collects input from the user to be used in another dialog box. For example, when printing to a file from the Print

dialog box, the user is presented with a text field to enter a file name and a Select button. The Select button posts a
file selection dialog box that returns the selected file to the Print dialog box but does not issue any command.

You must create the fileNameKw argument using the AFXStringKeyword method. Similarly, you must create the
readOnlyKw argument using the AFXBoolKeyword method. If the user clicks OK, the file selection dialog box
automatically updates the fileNameKw and readOnlyKw arguments. In addition, when the dialog box is posted,
it will set the current directory based on the path of the fileNameKw argument. This means that the dialog box
remembers the last directory visited by the user when the application posts the dialog box again.

The following flags are available for the opts argument:

AFXSELECTFILE_EXISTING

Allows the selection of an existing file only.

AFXSELECTFILE_MULTIPLE

Allows the selection of multiple existing files only.

AFXSELECTFILE_DIRECTORY

Allows the selection of an existing directory only.

AFXSELECTFILE_REMOTE_HOST

Allows the opening of files on a remote host.

119

File/Directory selector

You specify the patterns argument as a series of patterns separated by \n. The value of the target specified by the
patternIndexTgt argument determines which pattern is initially shown when the dialog box is posted.

The following is an example of how a file selection dialog box can be posted from a form:

def getFirstDialog(self):

 patterns = 'Output Database (*.odb)\nAll Files (*.*)'
 db = AFXFileSelectorDialog(self, 'Open ODB',
 self.nameKw, self.readOnlyKw, AFXSELECTFILE_EXISTING,
 patterns, self.patternIndexTgt)
 db.setReadOnlyPatterns('*.odb')
 self.setModal(True)
 return db

The following is an example of how a directory selection dialog box can be posted from another dialog box:

def onCmdDirectory(self, sender, sel, ptr):

 if not self.dirDb:
 self.dirDb = AFXFileSelectorDialog(self,
 'Select a Directory',self.form.dirNameKw,
 None, AFXSELECTFILE_DIRECTORY)
 self.dirDb.create()

 self.dirDb.showModal()
 return 1

Abaqus GUI Toolkit User's Guide120

File/Directory selector

Print dialog box

The Print dialog box provides standard printing functionality.

To post the Print dialog box from a button in your dialog box, you first access the print form mode by using the
getPrintForm method of the FileToolsetGui class. This can be done by storing a pointer to the form as shown in
the following example:

from sessionGui import FileToolsetGui

class MyMainWindow(AFXMainWindow):

 #~~~
 def __init__(self, app, windowTitle=''):

 ...

 fileToolset = FileToolsetGui()
 self.printForm = fileToolset.getPrintForm()
 self.registerToolset(fileToolset,
 GUI_IN_MENUBAR|GUI_IN_TOOLBAR)

 ...

Then you can use the print form in your dialog box class, as shown below:

printForm = getAFXApp().getAFXMainWindow().printForm
FXButton(parent, 'Print...', None, printForm,
 AFXMode.ID_ACTIVATE)

To access the print form, you must construct and register the file toolset. However, you cannot access the print form
from within a plug-in. As a result, you can only use the approach described here in a customized application.

121

Print dialog box

Color selector dialog box

The AFXColorSelector widget provides the ability to choose a color from a predefined palette of colors.

This dialog box is posted by an AFXColorButton. For more information, see Color buttons.

Abaqus GUI Toolkit User's Guide122

Color selector dialog box

Issuing Commands

This part describes how a dialog box can issue commands to the Abaqus/CAE kernel.

In this section:

• Commands

• Modes

123

Issuing Commands

Commands

This section describes the role of commands in the Abaqus GUI toolkit.

In this section:

• An overview of commands

• The kernel and GUI processes

• Executing commands

• Kernel commands

• GUI commands

• AFXTargets

• Accessing kernel data from the GUI

• Receiving notification of kernel data changes

Abaqus GUI Toolkit User's Guide124

An overview of commands

In Abaqus/CAE there are two types of commands: kernel commands and GUI commands.

Kernel commands

Kernel commands are used to build, analyze, and postprocess finite element models. Kernel commands are
documented in the Abaqus Scripting Reference Guide.

GUI commands

GUI commands are used by the user interface to process input gathered from the user and to construct a kernel
command string that is sent to the kernel for execution. GUI commands are documented in the Abaqus GUI

Toolkit Reference Guide.

125

An overview of commands

The kernel and GUI processes

Abaqus/CAE executes in two processes: a kernel process and a GUI process.

Kernel process

The kernel process holds all the data and methods that Abaqus/CAE uses to perform modeling operations; for
example, creating parts and meshing the assembly. The kernel process can run independently of the GUI process.

GUI process

The GUI is a convenient way for the user to specify input to Abaqus/CAE. A kernel command string is sent
from the GUI process to the kernel process via the inter-process communication (IPC) protocol. The kernel
process interprets and executes the kernel command string. If the kernel command throws an exception, the
exception is propagated back to the GUI process, where it should be caught and handled properly, typically by
posting an error dialog box.

Abaqus/CAE uses an IPC protocol to achieve communication between the kernel and GUI processes. For example,
the GUI often needs to query the kernel for a list of existing part names or for the values of a particular load that is
about to be edited from a dialog box. Similarly, the GUI may need to be notified when some kernel value changes so
that the GUI can update itself; for example, to post new job messages in the Job Monitor dialog box.

Abaqus/CAE uses targets and messages and the GUI updating process, built into the Abaqus GUI Toolkit, to achieve
communication within the GUI process. For example, an options dialog box may need to update when the current
viewport is changed or some widgets in a dialog box may need to be grayed out when the user clicks a particular button.

Figure 1 illustrates the communication between the kernel and the GUI processes when the user clicks on a button and
then enters values in the dialog box that appears.

Kernel Process GUI Process

 User clicks button that
 will post a dialog box

 Kernel is queried for values

 Values are set, dialog box is posted

 User changes values in dialog box

 GUI responds to user’s changes
 if necessary (e.g., stipples widgets)

 User clicks OK, GUI processes
 input and sends command string

 �

�

�

 Exception caught,
 error dialog box is posted

Throw exception

Success?

 Query is processed

 Values are sent to GUI

 Command is executed

�

�

Y

N

Done

Figure 1: Communication between the kernel and GUI processes.

Abaqus GUI Toolkit User's Guide126

The kernel and GUI processes

Executing commands

All commands are ultimately executed in the kernel process, but there are several ways this can be accomplished.

For example:

• You can execute kernel commands from a file by using the –start or –replay options on the command line.

• You can execute kernel commands from a file by using File->Run Script.

• You can type kernel commands in the Abaqus/CAE CLI.

• The GUI mode infrastructure can send a command string from the GUI to the kernel process for execution (see
Command processing for details).

• You can issue a kernel command directly from the GUI using the sendCommand function.

The sendCommand function takes three arguments:

• A required string argument specifying the command to be executed in the kernel.

• Two optional Boolean arguments, writeToReplay and writeToJournal.

The optional Boolean arguments control whether or not the sendCommand function writes the command to the replay
or journal file. By default, the sendCommand function writes the command to the replay file but not to the journal
file. If the command modifies the model in any way, you should record the command in both the replay and journal
files. However, if the command modifies only session data (such as the view of the viewport), you should record the
command in the replay file, but you should not record it in the journal file. By convention, the user should be able to
completely recreate the result of an interactive session by replaying its replay file. Only the commands that are written
to the journal file will be available for data recovery in the event that the application exits.

Abaqus Scripting Interface commands automatically journal themselves. As a result, if you use the sendCommand
function to issue an Abaqus Scripting Interface command, you should not set writeToJournal=True. Otherwise,
the command will be recorded twice in the journal file. For more information, see Abaqus/CAE command files.

If you write your own kernel scripting module and functions, you should be aware that you can use the
journalMethodCall function to record a command in the journal file. This option is preferable to using the
writeToJournal argument in the sendCommand function. Your command should not call journalMethodCall
if the command changes the Mdb object using built-in Abaqus Scripting Interface commands, because these are
journaled by default. A command that changes the customData of the Mdb should call journalMethodCall. For
an example that illustrates one common use of the journalMethodCall function, see journalMethodCall.

In general, you should enclose the sendCommand function in a try block to catch any exceptions that might be thrown
by the kernel command. In order for exceptions to be caught, they should be class-based exceptions and not simply
strings. For example:

from abaqusGui import sendCommand
try:
 sendCommand("mdb.customData.myCommand('Cmd-1', 50, 200)")
except ValueError as x:
 print('an exception was raised: ValueError: %s' % (x))
except:
 exc_type, exc_value = sys.exc_info()[:2]
 print('error. %s.%s'%(exc_type.__name__, exc_value))

127

Executing commands

Kernel commands

A kernel command can include a method, an object, and arguments.

A kernel command can consist of the following parts:

object + method + arguments (keywords)

Commands do not always have an object or even arguments, but they will always have a method.

For example:

session.viewports['Viewport: 1'].setValues(width=50, height=100)
|----------- object ------------| method |---- arguments ----|

mdb.models[Model-1'].PointSection(name='Section-3', mass=1.0)
|----- object ------|-- method --|------- arguments --------|

session.viewports['Viewport: 1']. bringToFront()
|---------- object -------------|-- method --|

LeafFromElementSets(elementSets='PART-1-1.E1')
|----- method -----|------- arguments -------|

Abaqus GUI Toolkit User's Guide128

Kernel commands

GUI commands

GUI commands are designed to work together with modes.
Modes perform the command processing and send the command to the kernel. For more information, see Modes.
This section describes how to construct and use GUI commands.

In this section:

• Constructing GUI commands

• GUI commands and current objects

• Keeping the GUI and commands up-to-date

• Targets and messages

• Automatic GUI updating

• Data targets

• Option versus value mode

• AFXKeywords

• Expression evaluation

• Connecting keywords to widgets

• Boolean, integer, float, and string keyword examples

• Symbolic constant keyword examples

• Tuple keyword examples

• Table keyword example

• Object keyword example

• Defaults objects

129

Constructing GUI commands

You use the AFXGuiCommand class to construct a GUI command.

The AFXGuiCommand class takes the following arguments:

mode

Modes are activated through a control in the GUI, typically a menu button. Once a mode is activated, it is
responsible for gathering user input, processing the input, sending a command, and performing any error handling
associated with the mode or the commands it sends. For a detailed discussion of modes, see Modes. The Abaqus
GUI toolkit provides two modes:

Form modes

Form modes provide an interface to dialog boxes. Form modes gather input from the user using one or
more dialog boxes.

Procedure modes

Procedure modes provide an interface that guides the user through a sequence of steps by prompting for
input in the prompt area of the application.

method

A String specifying the method of the kernel command.

objectName

A String specifying the object of the kernel command.

registerQuery

A Boolean specifying whether or not to register a query on the object.

For example, the following statement creates a command to edit graphics options:

 cmd = AFXGuiCommand(self, 'setValues',
 'session.graphicsOptions', True)

If you have more than one GUI command in a mode, the commands are processed in the same order in which they are
created in the mode. For more examples of creating GUI commands, see Form example and Procedure example.

Abaqus GUI Toolkit User's Guide130

Constructing GUI commands

GUI commands and current objects

Most commands in Abaqus/CAE operate on the current object; for example, the current viewport or the current part.

As a convenience, modes recognize a special syntax when interpreting the object specified in a GUI command. If you
place %s between square brackets following certain repositories, the mode replaces the %s with the current name. You
should always use this %s syntax, as opposed to hard-coding a name, so that the current name will always be used in
commands.

The following current objects are supported:

Mode InterpretationObject Specification

Current model mdb.models[%s]

Current part mdb.models[%s].parts[%s]

Current sketchmdb.models[%s].sketches[%s]

Current output databasesession.odbs[%s]

Current viewportsession.viewports[%s]

131

GUI commands and current objects

Keeping the GUI and commands up-to-date

If a command edits an object, you should request that a query be registered on that object by specifying True for the
registerQuery argument in the GUI command constructor. Registering a query will cause the keywords associated
with the AFXGuiCommand to be updated with the kernel values when the mode is started and any time the kernel
values change.

For example,

 cmd = AFXGuiCommand(
 mode, 'PointSection', 'mdb.models[%s]', True)

In addition, modes recognize session.viewports[%s] as a special repository. The mode registers a query on
the session automatically so that the command will be kept up-to-date if the user switches the current viewport. The
following examples illustrate the special syntax:

cmd = AFXGuiCommand(
 mode,'setValues','session.viewports[%s]', True)

cmd = AFXGuiCommand(
 mode,'bringToFront','session.viewports[%s]', True)

Abaqus GUI Toolkit User's Guide132

Keeping the GUI and commands up-to-date

Targets and messages

The Abaqus GUI Toolkit employs a target/message system to achieve communication within the GUI process.

The target/message system is in contrast to, for example, Motif’s callback mechanism. All widgets can send and receive
messages from any other widget. A message consists of two components:

• A message type

• A message ID

The message type indicates what kind of event occurred; for example, clicking a button. The message ID identifies
the sender of the message.

Most widgets in the Abaqus GUI Toolkit take arguments that specify their target and their ID. Even if a widget does
not take a target and ID as arguments, you can set these attributes using the setTarget and setSelector
methods. For example,

FXButton(parent, 'Label', tgt=self, sel=self.ID_1)

groupBox = FXGroupBox(parent)
groupBox.setTarget(self)
groupBox.setSelector(self.ID_2)

Widgets are capable of sending several types of messages. Two of the most common message types are
SEL_COMMAND and SEL_UPDATE. The SEL_COMMAND message type generally indicates that a widget was
“committed”; for example, the user clicked a push button. The SEL_UPDATE message is sent when a widget is
requesting its target to update its state; for more information, see Automatic GUI updating.

A message is routed to a message handler using a map defined in the target class. You add an entry in the map by
specifying which method to call when a message of a certain type and ID is received. These concepts are illustrated
in Figure 1.

Object 1

Object 3

Target: None

Msg ID: 0

Msg Types: Various

Message Map:

 (msgType1, ID_1, onCmdA)

 (msgType2, ID_2, onCmdB)

 (msgType1, ID_3, onCmdA)

onCmdA(...)

 Do something

onCmdB(...)

 Do something

Target: Object 3

Msg ID: ID_1

Msg Types: Various

Object 2

Target: Object 3

Msg ID: ID_2

Msg Types: Various

(ID_1, msgType1)

(ID_2, msgType2)

Figure 1:Targets and messages.

The message map is defined by using the FXMAPFUNC function (see example below). This macro takes four arguments:
self, message type, message ID, and method name. The method name must be qualified by the class name:
className.methodName. When a message is received whose type and ID match those defined in an FXMAPFUNC
entry, the corresponding method will be called. If you have a large range of IDs that you want to define in the message
map, you can use the FXMAPFUNCS function, which takes one additional argument: self, message type, start message
ID, end message ID, and method name.

Objects react to messages using message handlers. All message handlers have the same prototype, which contains the
following:

133

Targets and messages

• The sender of the message

• The message selector

• Some “user data”

You can extract the type and ID of the message from the selector using the SELTYPE and SELID functions.

The following code shows how message maps, message IDs, and message handlers work together:

class MyClass(BaseClass):

 [
 ID_1,
 ID_2,
 ID_LAST
] = range(BaseClass.ID_LAST, BaseClass.ID_LAST+3)

 def __init__(self):

 BaseClass.__init__(self)
 FXMAPFUNC(self, SEL_COMMAND, self.ID_1,
 MyClass.onCmdPrintMsg)
 FXMAPFUNC(self, SEL_COMMAND, self.ID_2,
 MyClass.onCmdPrintMsg)

 FXButton(self, 'Button 1', None, self, self.ID_1)
 FXButton(self, 'Button 2', None, self, self.ID_2)

 def onCmdPrintMsg(self, sender, sel, ptr):

 if SELID(sel) == self.ID_1:
 print 'Button 1 was pressed.'
 elif SELID(sel) == self.ID_2:
 print 'Button 2 was pressed.'
 return 1

The previous example starts by generating a list of IDs for use in the derived class. Since a widget has a specific target,
the ID of a widget does not have to be globally unique; it needs to be unique only within the target’s class and base
classes. To handle this numbering automatically, the convention is to define ID_LAST in each class. A derived class
should begin its numbering using the value of ID_LAST defined in its base class. In addition, a derived class should
define its own ID_LAST as the last ID in the derived class. A class that derives from the derived class will then be
able to make use of that ID to begin its numbering. ID_LAST should not be used by any widget. The only purpose of
ID_LAST is to provide an automatic numbering scheme between classes.

The example continues by constructing a message map by adding entries using the FXMAPFUNC function. In this
example, when a message of type SEL_COMMAND and an ID of ID_1 or ID_2 is received, the script calls the
onCmdPrintMsg method.

The two button widgets have their target set to self (MyClass). However, when each widget sends a message, the
widget sends a different message ID and the message handler checks the ID to determine who sent the message. For
example, if the user clicks the first button, the button sends a (ID_1, SEL_COMMAND) message to MyClass.
The class’s message map routes that message to the onCmdPrintMsg method. The onCmdPrintMsg method
checks the ID of the incoming message and prints Button 1 was pressed.

It is important that your message handlers return the proper value to ensure that the GUI is kept up-to-date. Returning
a 1 in a message handler tells the toolkit that the message was handled. In turn, if a message is handled, the toolkit
assumes that something may have changed that requires an update, and the toolkit initiates a GUI update process.
Returning a 0 in a message handler tells the toolkit that the message was not handled; therefore, the toolkit does not
initiate a GUI update process.

Abaqus GUI Toolkit User's Guide134

Targets and messages

Messages are normally sent by the GUI infrastructure as the result of some interaction in the GUI. However, you can
send a message directly to an object by calling its handle method. The handle method takes three arguments:
sender, selector, and userData. The sender is generally the object that is sending the message. The selector is made
up of the message ID and the message type. You can use the MKUINT function to create a selector, for example,
MKUINT(ID_1, SEL_COMMAND). The user data must be None since this feature is not supported in the Abaqus
GUI Toolkit.

135Abaqus GUI Toolkit User's Guide

Targets and messages

Automatic GUI updating

GUI updating is initiated automatically by the Abaqus GUI Toolkit when there are no more events to be handled,
usually when the GUI is idle and waiting for some user interaction.
During the automatic GUI update process, each widget sends a SEL_UPDATE message to its target asking to be
updated. In this way the GUI is constantly polling the application state to keep itself up-to-date.

For example, during automatic GUI updating, a check button sends an update message to its target. The target checks
some application state and determines whether or not the check button should be checked. If the button should be
checked, the target sends back an ID_CHECK message; otherwise, it sends an ID_UNCHECK message.

Widgets in the toolkit are bidirectional; that is, they can be in either a push state or a pull state.

push state

In a push state the widgets are collecting and sending user input to the application. When a widget is in the push

state, it does not participate in the automatic GUI updating process. Because the widget is not participating in
the automatic GUI updating process, the user has control over the input, rather than the GUI attempting to update
the widget.

pull state

In a pull state the widgets are interrogating the application to keep up-to-date.

Abaqus GUI Toolkit User's Guide136

Automatic GUI updating

Data targets

This section describes how the data targets work.
The following sections describe how the Abaqus GUI Toolkit has extended this concept to keywords that are used to
construct commands sent to the kernel.

In a typical GUI application you will want to do the following:

1. Initialize the values in a dialog box.

2. Post the dialog box to allow the user to make changes.

3. Collect the changes from the dialog box.

In addition, you may want the dialog box to update its state if some application state is updated while the dialog box
is posted. Data targets are designed to make these tasks easier for the GUI programmer.

A data target acts as a bidirectional intermediary between some application state and GUI widgets. More than one
widget can be connected to a data target, but a data target acts on only one piece of application state. When the user
uses the GUI to change a value, the application state monitored by the data target is updated automatically. Conversely,
when the application state is updated, the widget connected to the data target is updated automatically.

As described in Automatic GUI updating, widgets can be in a push state or a pull state.

Push state

In a push state the widgets are collecting and sending user input to the application. Figure 1 illustrates how a
data target works with a widget that is in a push state. The sequence is as follows:

1. First, the user enters a value of 7 in the text field and then presses Enter.

2. This triggers the text field widget to send an (ID, SEL_COMMAND) message to its target—the data target.

3. The data target responds by sending the sender—the text field widget—a message requesting the value in
the text field. The data target uses that value to update the value of its data.

7

ID, SEL_COMMAND

ID_GETINTVALUE, SEL_COMMAND

data

Data Target data

The user enters a

value into the text field.

Figure 1: A data target with a text field widget in push state.

Pull state

In a pull state the widgets are interrogating the application to keep up-to-date. Figure 2 illustrates how a data
target works with a widget that is in a pull state. The sequence is as follows:

1. When the GUI is idle, it initiates a GUI update.

2. The GUI update triggers each widget to send an (ID, SEL_UPDATE) message to its target.

3. In this case the data target responds by sending the sender—the text field widget—a message telling it to set
its value to the value of the data target’s data.

137

Data targets

7

ID, SEL_UPDATE

ID_SETINTVALUE, SEL_COMMAND

data

Data Target data

The data target updates

the value in the text field.

Figure 2: A data target with a text field widget in a pull state.

Abaqus GUI Toolkit User's Guide138

Data targets

Option versus value mode

A data target works in one of two modes: value or option.
The examples in the previous section described the value mode. You use the value mode when the actual value of some
data is of interest. In contrast, you use the option mode when you require a selection from many items and the value
is not of particular importance.

For data targets operating in the option mode with a widget in the push state, the behavior is similar to the value mode
described in the previous section. When the user clicks a button, the button sends an (ID, SEL_COMMAND) message
to its target. In turn, the target responds by sending the sender a message requesting it to update the data target’s data
to the value of the sender’s message ID.

For data targets operating in the option mode with a widget in the pull state, the behavior is slightly different from the
value mode described in the previous section. During a GUI update the data target sends either a check or uncheck
message back to the sender, depending on whether the sender’s ID matches the value of the data target’s data.

For example, Figure 1 illustrates a data target operating in the option mode with three radio buttons in the pull state.
Suppose that the value of the data being monitored by the data target is 13 and the message IDs of the radio buttons
are 2, 13, and 58, respectively. The sequence is as follows:

1. During a GUI update the first radio button sends a (2, SEL_UPDATE) message to the data target.

2. The data target compares the message ID (2) to the value of its data (13) and sends an uncheck message back to
the radio button since the values do not match.

3. The second radio button then sends a (13, SEL_UPDATE) message to the data target.

4. The data target compares the values and sends a check message back to the radio button since the values do match.

5. Similarly, the third button receives an uncheck message from the data target since the values of the message ID
and its data do not match.

In this way the Abaqus GUI Toolkit automatically maintains the radio button behavior (only one button at a time will
ever be checked).

Option 2

ID2, SEL_UPDATE

ID_CHECK, SEL_COMMAND

Data Target data

Option 1

ID1, SEL_UPDATE

ID_UNCHECK, SEL_COMMAND

Option 3

ID3, SEL_UPDATE

ID_UNCHECK, SEL_COMMAND

The data�

target�

updates �

the three �

radio buttons

(ID=2)

(ID=13)

(ID=58)

Figure 1: A data target operating on three radio buttons in option mode and a pull state.

139

Option versus value mode

AFXKeywords

Keywords generate the arguments to a GUI command. These keywords belong to the command, but the keywords are
also stored as members of the mode.
As a result, you can easily connect the keywords to widgets in a dialog box that updates the value of the keywords.
For more information, see Dialog boxes.

AFXKeyword is the base class for keywords in the toolkit. The AFXKeyword class derives from a data target, so it
automatically keeps the GUI and application data synchronized with each other. For more information, see Data targets.

The AFXKeyword class extends the functionality of the FXDataTarget class by holding additional values, such as the
name of the keyword, a default value, and a previous value. The keyword’s GUI command uses this information to
construct a kernel command string.

You can designate a keyword as optional or required. A required keyword is always issued by the GUI command. An
optional keyword, whose values have not changed since the last commit of the command, is not issued by the GUI
command. If none of the keywords has changed since the last commit, no GUI command will be issued when the mode
is committed.

The following types of keywords are supported:

• AFXIntKeyword(cmd, name, isRequired, defaultValue)

• AFXFloatKeyword(cmd, name, isRequired, defaultValue)

• AFXStringKeyword(cmd, name, isRequired, defaultValue)

• AFXBoolKeyword(cmd, name, booleanType, isRequired,
 defaultValue)

• AFXSymConstKeyword(cmd, name, isRequired, defaultValue)

• AFXTupleKeyword(cmd, name, isRequired, minLength,
 maxLength, opts)

• AFXTableKeyword(cmd, name, isRequired, minLength,
 maxLength, opts)

• AFXObjectKeyword(cmd, name, isRequired, defaultValue)

The type of data supported by each keyword is implied from the name of its constructor, except for AFXObjectKeyword.
An object keyword is one that supports specifying a variable name as the keyword's value.

The prototypes for all the keywords are similar. The first two arguments of a keyword are:

• A GUI command object.

• A String specifying the name of the keyword.

All keywords also support an argument that determines whether the keyword is required or optional. If a keyword is
required, it will always be sent with the command. If a keyword is optional, it will be sent only if its value changes.
However, if the keyword is connected to a widget that is hidden, then the keyword will not be sent regardless of whether
it is required or optional.

Most keywords support the specification of a default value. When you construct a keyword, its value is set to the default
value. If you use the keyword's setDefaultValue method to change the default value, you will not affect the value
of the keyword unless you also call the keyword's setValueToDefault method. In contrast, if you want to change
only the value of the keyword, without changing its default value, you should use the keywords' setValue method.

Abaqus GUI Toolkit User's Guide140

AFXKeywords

When the mode issues the command to the kernel, the keywords will be ordered in the same order in which they were
created in the mode.

When storing keywords in the mode class, the convention is to name the keyword object using the same name as the
keyword label plus Kw. For example,

self.rKw = AFXIntKeyword(self.cmd, 'r', True)
self.tKw = AFXFloatKeyword(self.cmd, 't', True)
self.nameKw = AFXStringKeyword(cmd, 'name', True, 'Part-1')
self.twistKw = AFXBoolKeyword(cmd, 'twist',
 AFXBoolKeyword.ON_OFF, 0)
self.typeKw = AFXSymConstKeyword(cmd, 'type', True,
 SHADED.getId())
self.imageSizeKw = AFXTupleKeyword(cmd, 'imageSize', False,
 1, 2, AFXTUPLE_TYPE_FLOAT)

141Abaqus GUI Toolkit User's Guide

AFXKeywords

Expression evaluation

The AFXFloatKeyword and AFXIntKeyword both support expression evaluation.

You can type a numeric expression into a text field connected to an AFXFloatKeyword or AFXIntKeyword and that
expression will get evaluated. For example, you could type any of the following expressions into a text field connected
to an AFXFloatKeyword:

3 + (7 * 22)
2 * 3.1415 * 1.5
125/55.8

The expression will get sent in the command, so it will appear in the replay and journal files, but once the command
is processed in the kernel, only the resultant value gets stored and the expression is lost.

Expression evaluation is always available with an AFXFloatKeyword, but it is optional for AFXIntKeyword (the
default is to perform expression evaluation). If you connect an AFXIntKeyword to an AFXList or AFXComboBox
and the choices shown in the list or combo box do not represent numeric values, you must disable expression evaluation.
For example:

Form code snippet:

 self.orderKw = AFXIntKeyword(cmd=cmd, name='order',
 isRequired=False, defaultValue=1, evalExpression=False)

Dialog code snippet:

 combo = AFXComboBox(self, 8, 3, 'Order:', form.orderKw, 0)
 combo.appendItem('First', 1)
 combo.appendItem('Second', 2)
 combo.appendItem('Third', 3)

The command snippet from this code will look like:

someCommand(order=2, ...)

Abaqus GUI Toolkit User's Guide142

Expression evaluation

Connecting keywords to widgets

Keywords are used in the GUI by setting them as the targets of widgets.

The AFXDataDialog class takes a mode as one of its constructor arguments. The dialog box uses the mode provided
in the constructor to access the keywords stored in the mode. In addition, the dialog box uses the keywords as targets
of widgets in the dialog.

In addition to a target, a widget also has a message ID. It is important that the appropriate ID be set for the keyword
to operate in the proper mode: value or option. For more information, see Data targets. In most cases a value of zero
should be used for the message ID; a value of zero indicates that the keyword should operate in value mode. The table
below summarizes the message ID usage with keywords, and the following sections give examples for each type of
keyword.

DescriptionIDKeyword

Keyword operates in value mode. Use this when the keyword is connected to a
text field, list, combo box, or spinner.

0 AFXIntKeyword

Keyword operates in option mode. Use this when the keyword is connected to a
radio button.

>0

Keyword operates in value mode.0 AFXFloatKeyword

Keyword operates in value mode.0 AFXStringKeyword

Keyword operates in value mode. This keyword should be used only with widgets
that allow only Boolean values, such as FXCheckButton.

0 AFXBoolKeyword

Keyword operates in value mode. Use this value when the keyword is connected
to a list or combo box.

0 AFXSymConstKeyword

Keyword operates in option mode. Use the value of the Symbolic Constant’s ID
when the keyword is connected to a radio button. Do not use this keyword with
FXCheckButton.

> 0

Keyword operates in value mode. Use this value when the entire tuple is gathered
from a single widget.

0 AFXTupleKeyword

Keyword operates in value mode for only the nth element of the tuple, where
n=ID. Use this value when the input for each element is gathered from separate
widgets.

1, 2, 3,.

Keyword operates in value mode.0 AFXTableKeyword

Keyword operates in value mode.0 AFXObjectKeyword

143

Connecting keywords to widgets

Boolean, integer, float, and string keyword examples

The following statements illustrate the use of Boolean, integer, float, and string keywords.

Boolean keyword with a checkbox
#
FXCheckButton(self, 'Show node labels', mode.nodeLabelsKw, 0)

#Boolean keyword with option tree list
#
self.tree = AFXOptionTreeList(parent, 6)
self.treeitem.addItemLast('Item 1', mode.item1Kw)

Integer keyword
#
AFXTextField(self, 8, 'Number of CPUs:', mode.cpusKw, 0)

combo = AFXComboBox(self, 8, 3, 'Number:', mode.numberKw, 0)
combo.appendItem('1', 1)
combo.appendItem('2', 2)
combo.appendItem('3', 3)

Float keyword
#
AFXTextField(self, 8, 'Radius:', mode.radiusKw, 0)

String keyword
#
AFXTextField(self, 8, 'Name:', mode.nameKw, 0)

Abaqus GUI Toolkit User's Guide144

Boolean, integer, float, and string keyword examples

Symbolic constant keyword examples

Symbolic constants provide a way to specify choices for a command argument that make the command more readable.
For example, there are three choices for the renderStyle argument in display options commands.

We could number these choices using integer values from 1 to 3. However, using integer values would result in a
command that is not very readable; for example, renderStyle=2. Alternatively, if we define symbolic constants
for each choice, the command becomes more readable; for example, renderStyle=HIDDEN. Internally, symbolic
constants contain an integer ID that can be accessed via its getId() method. Symbolic constants can be used in both
the GUI and kernel processes. Typically you should create a module that defines your symbolic constants and then
import that module into both your kernel and GUI scripts.

You can import the SymbolicConstant constructor from the symbolicConstants module. The constructor takes a single
string argument. By convention, the string argument uses all capital letters, with an underscore between words, and
the variable name is the same as the string argument. For example,

from symbolicConstants import SymbolicConstant
AS_IS = SymbolicConstant('AS_IS')

In the case of symbolic constant keywords, you can use a value of zero or the value of the ID of a symbolic constant
for the message ID. Symbolic constants have a unique integer ID that is used to set the value of symbolic constant
keywords along with a string representation that is used in the generation of the command. To access the integer ID
of a symbolic constant, use its getId method.

If the keyword is connected to a list or combo box widget, you should use a value of zero for the ID in the widget
constructor. The AFXList, AFXComboBox, and AFXListBox widgets have been designed to handle symbolic constant
keywords as targets. When items are added to a list or combo box, a symbolic constant’s ID is passed in as user data.
These widgets react by setting their value to the item whose user data matches the value of their target, as opposed to
setting their value to the item whose index matches the target’s value. The following example illustrates how a combo
box can be connected to a symbolic constant keyword:

combo = AFXComboBox(hwGb, 18, 4, 'Highlight method:',
 mode.highlightMethodHintKw, 0)
combo.appendItem('Hardware Overlay', HARDWARE_OVERLAY.getId())
combo.appendItem('Software Overlay', SOFTWARE_OVERLAY.getId())
combo.appendItem('XOR', XOR.getId())
combo.appendItem('Blend', BLEND.getId())

If the keyword is connected to a radio button, you should use the ID of the symbolic constant that corresponds to that
radio button for the message ID. Since the ID of all symbolic constants is greater than zero, this tells the keyword to
operate in option mode. The following example illustrates how symbolic constant keywords can be used with radio
buttons:

from abaqusConstants import *
...

Modeling Space
#
gb = FXGroupBox(self, 'Modeling Space',
 FRAME_GROOVE|LAYOUT_FILL_X)
FXRadioButton(gb, '3D', mode.dimensionalityKw,
 THREE_D.getId(), LAYOUT_SIDE_LEFT)
FXRadioButton(gb, '2D Planar', mode.dimensionalityKw,
 TWO_D_PLANAR.getId(), LAYOUT_SIDE_LEFT)
FXRadioButton(gb, 'Axisymmetric',
 mode.dimensionalityKw, AXISYMMETRIC.getId(),
 LAYOUT_SIDE_LEFT)

145

Symbolic constant keyword examples

Tuple keyword examples

In the case of tuple keywords, a value of zero for the message ID indicates that the entire tuple will be updated.

For example, you can use a single text field to collect X-, Y-, and Z-inputs from the user. In this case the comma-separated
string entered by the user is used to set the entire value of the tuple keyword. For example, if you define a tuple keyword
as follows:

self.viewVectorKw = AFXTupleKeyword(cmd, 'viewVector',
 True, 3, 3)

you can connect the tuple keyword to a single text field as follows:

AFXTextField(self, 12, 'View Vector (X,Y,Z)',
 mode.viewVectorKw, 0)

Alternatively, you can use three separate text fields to collect X-, Y-, and Z-inputs. Each of the text field widgets uses
a message ID equal to the element number (1-based) of the tuple to which they correspond. For example, 1 corresponds
to the first element of the tuple; 2 corresponds to the second element in the tuple, etc. In this case we can connect the
keyword to three text fields as follows:

AFXTextField(self, 4, 'X:', mode.viewVectorKw, 1)
AFXTextField(self, 4, 'Y:', mode.viewVectorKw, 2)
AFXTextField(self, 4, 'Z:', mode.viewVectorKw, 3)

Abaqus GUI Toolkit User's Guide146

Tuple keyword examples

Table keyword example

The AFXTableKeyword must be connected to a table widget. This type of keyword will result in a command argument
that is a tuple of tuples. The values in a table keyword can be Ints, Floats, or Strings.

The default minimum number of rows is 0, and the default maximum number rows is −1, indicating that the number
of rows is unlimited. Tables can vary in size because the user can add or delete rows; as a result, you usually specify
the defaults for the minimum and maximum number of rows. For example, to generate a command that creates XY
data, you can define the following keywords in the form

self.cmd = AFXGuiCommand(self, 'XYData', 'session')
self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
self.dataKw = AFXTableKeyword(
 self.cmd, 'data', True, 0, -1, AFXTABLE_TYPE_FLOAT)

In the dialog box you connect the table keyword to a table using a selector value of zero.

table = AFXTable(vf, 6, 3, 6, 3,
 form.dataKw, 0, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

If you have a table in which you are interested in the values of only a single column, you can make use of the
AFXColumnItems object to track selections. For example, if a table contains Name and Description columns, you
might only need the names in the selected rows for your command. In that case you could use AFXColumnItems to
keep a tuple keyword up to date with the names in the selected rows of the table as shown in the following code:

ci = AFXColumnItems(referenceColumn=0, tgt=form.tupleKw, sel=0)
table = AFXTable(self, 4, 2, 4, 2, ci, 0,
 AFXTABLE_NORMAL|AFXTABLE_ROW_MODE|AFXTABLE_EXTENDED_SELECT)

147

Table keyword example

Object keyword example

The AFXObjectKeyword has a variable name for its value.

In most cases you use an AFXObjectKeyword in a command that is preceded by some setup commands. For example,

p = mdb.models['Model-1'].parts['Part-1']
session.viewports['Viewport: 1'].setValues(displayedObject=p)

In this example, in the form you would issue the first command “manually,” and use an object keyword as part of an
AFXGuiCommand to have the second command issued using “p” as the variable name. For example,

self.cmd = AFXGuiCommand(self, 'setValues',
 'session.viewports[%s]')
self.doKw = AFXObjectKeyword(self.cmd, 'displayedObject',
 True, 'p')

You also use an AFXObjectKeyword in procedures that require picking. For more information, see Picking in procedure

modes.

Abaqus GUI Toolkit User's Guide148

Object keyword example

Defaults objects

A defaults object can be used to restore the values of the keywords in a command to their default values when the user
presses the Defaults button in the dialog box.

You can register a defaults object with a command as follows:

self.registerDefaultsObject(cmd,
 'session.defaultGraphicsOptions')

In addition, the AFXGuiCommand class has a setKeywordValuesToDefaults method that you can use to
initialize the state of all keywords in a command. In most cases you use the setKeywordValuesToDefaults
method to initialize the state of all keywords in the getFirstDialog method of the mode. As a result, the application
will initialize the value of the keywords in a command each time the dialog box is posted.

If no defaults object is specified, the command uses the default values specified in the keyword's constructor when the
user presses the Defaults button in the dialog box.

149

Defaults objects

AFXTargets

Targets are similar to keywords in that they automatically keep their data synchronized with the GUI; however, targets
do not participate in command processing.

Targets are typically used to monitor the value of some widget in the GUI that is not directly related to a command;
for example, selecting the type of load to create from the Create Load dialog box. The following types of targets are
supported:

• AFXIntTarget(initialValue)

• AFXFloatTarget(initialValue)

• AFXStringTarget(initialValue)

Abaqus GUI Toolkit User's Guide150

AFXTargets

Accessing kernel data from the GUI

You can use the abaqusGui module or the kernelAccess module to access the kernel mdb and session objects
from the GUI in Abaqus/CAE.

Each module has advantages and disadvantages for programming in the GUI. You access the objects from each module
in the same way:

from abaqusGui import mdb, session

or

from kernelAccess import mdb, session

In each case the imported objects are proxies for the actual objects in the kernel.

You can query the abaqusGui module mdb and session proxy objects for attributes of objects, but they cannot be
used for arbitrary method calls (repository methods such as keys(), values(), and items() are allowed). The
abaqusGui proxy objects are regularly updated from the kernel, and accessing them is an in-process function call
(fast). However, in some cases the proxy objects can get out of date. For example, when a script is running the proxy
objects are not updated until it ends.

You can use the kernelAccess module mdb and session proxy objects to execute any Abaqus Scripting Interface
kernel command. In addition to querying attributes of the kernel objects, you can call their methods and obtain any
return values as if you were executing the code in the kernel. The kernelAccess proxy objects are always up-to-date
because accessing them calls the kernel object synchronously, creating inter-process communication (IPC) traffic. This
immediate interaction with the kernel creates a performance disadvantage when you use the kernelAccess proxy
objects instead of the abaqusGui module proxy objects. For example, call the getVolume method of the Part
object:

from kernelAccess import mdb, session
partNames = mdb.models['Model-1'].parts.keys()
v = mdb.models['Model-1'].parts['Part-1'].getVolume()

This procedure involves GUI-kernel communication via the IPC mechanism, so it is not recommended for use where
performance is a concern. In other words, you should only use this procedure for accessing data or calling methods
that do not take a “long time” to execute. If performance does become a problem, you can access the mdb and session
objects from the abaqusGui module instead of the kernelAccess module.

Although you can import the kernelAccess module in a script that is executed before the application startup script
has completed, you cannot query the mdb and session objects until the application startup script has completed. In
other words, you can import the kernelAccess module in your scripts in code that is executed during the initial
construction of the GUI; however, you should not attempt to access either the mdb or session object until it is needed
because of some user interaction in the GUI. For more information, see Startup script

151

Accessing kernel data from the GUI

Receiving notification of kernel data changes

This section describes how the GUI can be notified when kernel objects and custom kernel objects are modified
outside the GUI process.

In this section:

• Automatically registering a query on kernel objects

• Manually registering a query on kernel objects

• Using registerQuery on kernelAccess proxy objects

• Recognizing when custom kernel data change

Abaqus GUI Toolkit User's Guide152

Automatically registering a query on kernel objects

This section describes automatically registering a query on kernel object.

Queries provide a mechanism that allows the GUI process to be notified when data in the kernel change. Keeping the

GUI and commands up-to-date describes how you use the registerQuery argument of the AFXGuiCommand constructor.
The registerQuery argument is a Boolean flag that specifies whether to register a query automatically on the object
being edited by the specified kernel command. If the kernel object specified in the AFXGuiCommand constructor
changes, the infrastructure updates the keywords in the GUI with the latest values. As a result, you do not need to
register a query explicitly. By default, registerQuery= False, and the query is not automatically registered.

For example,

cmd = AFXGuiCommand(mode,'setValues', mdb.models[%s].parts[%s],
 True)

In this example, if the user changes the current part, the path to the setValues method is updated to reflect the new
current part. As a result, when the user clicks OK to commit a customized dialog box, the mode issues a setValues
command that modifies the current part.

153

Automatically registering a query on kernel objects

Manually registering a query on kernel objects

For objects not directly related to a command, such as a repository, you may wish to register a query yourself. You
can register a query on an Abaqus/CAE object using the registerQuery method.

The registerQuery method takes a callback function as an argument. When the object upon which the query is
registered changes, the infrastructure automatically calls the function supplied in the registerQuery method.
For example,

from abaqusGui import *

def onPartsChanged():
 print('The parts repository changed.')
 keys = mdb.models['Model-1'].parts.keys()
 print('The new keys are:', keys)

mdb.models['Model-1'].parts.registerQuery(onPartsChanged)

In the previous example, if a part is created, deleted, renamed, or edited, the onPartsChanged method will be
called.

The registerQuery method takes an optional second argument that determines whether or not the callback is
called when the query is first registered. By default, this argument is True, and the callback will be called when the
query is first registered. If you specify False as the second argument, the query callback is not called when the query
is first registered. Delaying the query callback can prevent errors in certain situations; for more information, see Using

registerQuery on kernelAccess proxy objects.

Since registered queries create “traffic” between the kernel and GUI processes, you should unregister queries when
you do not need them. To unregister a query, use the unregisterQuery method and pass the same arguments that
you used in the registerQuery method. In most cases, you register queries within the show method that you write
for your dialog box that needs the queries. Similarly, you unregister queries within the hide method that you write
for your dialog box. If you do not unregister a query and the query fires when the dialog box is not posted, the application
may exit if the callback tries to modify a widget in the dialog box.

If the user creates, deletes, renames, or edits a part in the following example, the application will call the
onPartsChanged method and update the dialog box:

class MyDialog(AFXDataDialog):

 ...

 def onPartsChanged(self):

 # Code to update the part list
 # in the dialog box

 def show(self):

 from kernelAccess import mdb
 mdb.models['Model-1'].parts.registerQuery(
 self.onPartsChanged)
 AFXDataDialog.show(self)

 def hide(self):

 from kernelAccess import mdb
 mdb.models['Model-1'].parts.unregisterQuery(
 self.onPartsChanged)
 AFXDataDialog.hide(self)

Abaqus GUI Toolkit User's Guide154

Manually registering a query on kernel objects

Using registerQuery on kernelAccess proxy objects

It is possible to call the registerQuery method on a kernelAccess module proxy object instead of the
abaqusGui proxy object. However, internally the query is always registered on the abaqusGui proxy object.

The two kinds of proxy objects are not always perfectly synchronized. In most cases, this will not matter. However, it
can cause a problem if the query is registered while a change is being made on the kernel. For example,

from kernelAccess import mdb

def onPartsChanged():
 print('The parts repository changed.')
 keys = mdb.models['Model-1'].parts.keys() # OK
 print('The new keys are:', keys)
 if keys:
 mdb.models['Model-1'].parts[keys[0]].registerQuery(onPartsChanged) # Not
 OK
 # Internally the registerQuery method will be called on abaqusGui.mdb...

mdb.models['Model-1'].parts.registerQuery(onPartsChanged)

If a changeKey command that affects the names in the parts repository is subsequently issued, the above example
will fail. The keys (part names) are obtained using the kernelAccess mdb proxy object and contain the changed
name. However, the registerQuery method—based on the abaqusGui proxy object—does not see the new
names until the changeKey command is completed. The registerQuery on the newly named part object (using
keys()[0]) is being called within the callback, before the changeKey command is completed, and the callback
is using the new name. Since the abaqusGui proxy for the parts repository has not yet been updated, a Keyerror
is raised.

Run the above example in the GUI, create a part, then enter the following in the command line interface (CLI):

>>> mdb.models['Model-1'].parts.changeKey('Part-1', 'ROD')

You will get the following error:

Traceback (most recent call last):
 File "path and filename of the example script",
line 9, in onPartsChanged
 mdb.models['Model-1].parts[partNames[0]].registerQuery
(onPartsChanged) # Not OK
KeyError: 'ROD'

The error can cause Abaqus/CAE to stop responding. Setting the second argument on registerQuery to False
prevents the callback from being called immediately and prevents this potential error.

155

Using registerQuery on kernelAccess proxy objects

Recognizing when custom kernel data change

To receive notification in the GUI of changes made to custom kernel objects, those kernel objects must make use of
special classes provided by the customKernel module.

The customKernel module provides the following special classes, all of which are capable of notifying the GUI
when the contents of the class changes:

• CommandRegister allows you to create general classes. For more information, see CommandRegister class.

• RepositorySupport allows you to create repositories below other repositories. For more information, see
RepositorySupport.

• RegisteredDictionary allows you to create custom dictionaries. For more information, see Registered

dictionaries.

• RegisteredList allows you to create custom lists. For more information, see Registered lists.

• RegisteredTuple allows you to create custom tuples. For more information, see Registered tuples.

For more information on the customKernel module, see Extending the Abaqus Scripting Interface.

Abaqus GUI Toolkit User's Guide156

Recognizing when custom kernel data change

Modes

A mode is a mechanism for gathering input from the user, processing that input, and then issuing a command
to the kernel. This section describes the modes that are available in the Abaqus GUI Toolkit.

In this section:

• About modes

• Mode processing

• Form modes

• Procedure modes

• Picking in procedure modes

157

About modes

There are two types of modes: form modes and procedure modes.

Form Modes

Form modes provide an interface to standalone dialog boxes.

Procedure Modes

Procedure modes provide an interface that uses the prompt area to guide the user through a sequence of steps
that collect input from dialog boxes or from selections in the viewport.

If a mode needs to perform drawing or highlighting in the current viewport, the mode must be a procedure mode.
Because Abaqus/CAE highlights objects that the user picks, any mode that requires the user to pick in the viewport
must also be a procedure mode. Procedure modes ensure that only one procedure at a time has control over the scene
in the current viewport. If two different procedures could highlight different portions of the model for different purposes,
the resulting display would be confusing and ambiguous.

Abaqus GUI Toolkit User's Guide158

About modes

Mode processing

Modes are typically activated by a button in the GUI. Once a mode is activated, it is responsible for gathering
user input, processing the input, sending a command, and performing any error handling associated with the
mode or the commands it sends. This section describes how modes are processed.

In this section:

• The mode processing sequence

• Activating a mode

• Step and dialog box processing

• Command processing

• Work in progress

• Command error handling

159

The mode processing sequence

During the input gathering process, the mode allows you to perform some intermediate error checking.
For example, if the user is supposed to enter a value between zero and one but enters a value outside this range, you
can flag the error before continuing to collect more input. After all the inputs are collected from the user, the mode
verifies the input, constructs the command, and sends the command to the kernel. If there is an exception thrown by
the kernel, the mode will handle the exception.

The mode processing sequence is shown in Figure 1.

verifyCurrentKeywordValues()

N

Y

doCustomChecks()

Errors?

N

Y

getNextStep/Dialog()

getFirstStep/Dialog()
Errors?

Y

verifyKeywordValues()

getCommandString()

sendCommandString()

Errors?

N

Y handleException()

doCustomTasks()

N

doCustomChecks()

Errors?

N

Y

activate()

Get user input

deactivate () or Loop

More
steps?

Errors?
Y

N

Figure 1:The mode processing sequence.

To provide custom processing in your mode, you can overwrite many of the methods shown in Figure 1. If you overwrite
a method, you should use the exact same prototype for your method, including the same default values that the method
may have. Refer to the Abaqus GUI Toolkit Reference Guide to determine the prototype of a method.

Abaqus GUI Toolkit User's Guide160

The mode processing sequence

Activating a mode

A mode is usually activated by sending it a message with its ID set to ID_ACTIVATE and a type of SEL_COMMAND.
This message causes the activate method of the mode to be called.
For more information, see Targets and messages.

If you need to do any processing before a mode begins to collect input from the user, you can redefine the activate
method. For example, you can check that the current viewport contains a part before beginning a mode that requires
the user to pick something on a part, as shown in the following method:

 def activate(self):

 if getDisplayedObjectType() == PART:
 AFXForm.activate(self)
 else:
 showAFXErrorDialog(getAFXApp().getAFXMainWindow(),
 'A part must be displayed in the \
 current viewport.')

If you write your own activate (or deactivate) method, you must call the base class version of that method if no error
conditions are encountered. The base class methods perform additional processing necessary to make the mode function
properly.

161

Activating a mode

Step and dialog box processing

After a mode is activated, it cycles through a sequence of events collecting inputs from the user and verifying the
inputs.

After the user commits each step or dialog box, the mode calls the following methods:

verifyCurrentKeywordValues

The verifyCurrentKeywordValues method calls the verify method for each keyword associated with
the current step or dialog box, and the method posts an error dialog box if necessary. The
verifyCurrentKeywordValues method returns True if no errors were encountered; otherwise, it returns
False and terminates further processing.

doCustomChecks

The doCustomChecks method has an empty implementation in the base class. You can redefine this method
to perform any additional checking of keyword values, typically to perform range checking or to check some
interdependency between values. The doCustomChecks method should return True if no errors were
encountered; otherwise, it should return False so that further command processing will be terminated. The
doCustomChecks method is called by the mode during step and dialog box processing and during command
processing.

Abaqus GUI Toolkit User's Guide162

Step and dialog box processing

Command processing

When the mode finishes collecting inputs from the user, it calls a series of methods. If needed, you can redefine some
of the methods to customize the behavior of the mode.

The following list describes each of the methods called by the mode:

verifyKeywordValues

The verifyKeywordValues method calls the verify method for each keyword of each command
associated with the mode and posts an error dialog box if necessary. The verifyKeywordValues method
returns True if no errors were encountered; otherwise, it returns False and terminates further command processing.

doCustomChecks

The doCustomChecks method has an empty implementation in the base class. You can redefine this method
to perform any additional checking of keyword values, typically to perform range checking or to check some
interdependency between values. The doCustomChecks method should return True if no errors were
encountered; otherwise, it should return False so that further command processing will be terminated. The
doCustomChecks method is called by the mode during step and dialog box processing and during command
processing.

The following example shows how you can use the doCustomChecks method to find an invalid value and,
in response, to post an error dialog box and put the cursor into the appropriate widget. If the keyword is connected
to a text field in the dialog, the onKeywordError method finds the text field widget, select its contents, and
places the focus on the widget.

def doCustomChecks(self):

 if self.lengthKw.getValue() >= 1000:
 showAFXErrorDialog(self.getCurrentDialog(),
 'Length must be less than 1000.')
 self.getCurrentDialog().onKeywordError(self.lengthKw)
 return False

issueCommands

The issueCommands method is responsible for constructing the command string, issuing it to the kernel,
handling any exceptions from the command, and deactivating the mode if necessary. The issueCommands
method calls the following methods:

• getCommandString: This method returns a string that represents the commands collected from each
command associated with the mode. Required keywords are always sent with the command, but optional
keywords are sent only if their value has changed. The commands are issued to the kernel in the same order
as the commands were constructed in the mode. If your command does not fit the standard style of the
command generated by the mode, you can redefine this method to generate your own command string.

• sendCommandString: This method takes the command string returned from the getCommandString
method and sends it to the kernel for processing. You should not overwrite this method or your mode may
not perform properly.

• doCustomTasks: This method has an empty implementation in the base class. You can redefine this
method to perform any additional tasks required after a command is processed by the kernel.

After calling these methods, the issueCommands method will deactivate the mode if the user pressed the OK

button.

163

Command processing

The issueCommands method also controls the writing of the command to the replay and journal files. The
GUI infrastructure always calls issueCommands with writeToReplay=True and
writeToJournal=False. If you want to change the behavior, you can overwrite this method and specify
different values for the arguments. If you overwrite the issueCommands method you must specify both
arguments, and you should always call the base class method from your method or your mode may not perform
properly. For example:

def issueCommands(self, writeToReplay, writeToJournal):
 AFXForm.issueCommands(self, writeToReplay=True,
 writeToJournal=True)

In most cases, you do not need to call issueCommands since the infrastructure will call it automatically;
however, if you interrupt the normal flow of mode processing, you must call issueCommands to complete
the processing. For example, if before issuing a command you want to ask the user for permission to execute
the command, you can post a warning dialog box from the doCustomChecks method. In this example you
must return False from the doCustomChecks method to stop the command processing. The application will
then wait for the user to make a selection from the warning dialog box. When the user clicks a button in the
warning dialog box, you must catch the message sent by the dialog box to your form. If the user clicks Yes, you
should continue the command processing as shown in the following example:

class MyForm(AFXForm):

 ID_OVERWRITE = AFXForm.ID_LAST

 def __init__(self, owner):

 AFXForm.__init__(self, owner)
 FXMAPFUNC(self, SEL_COMMAND,
 self.ID_OVERWRITE, MyForm.onCmdOverwrite)
 ...

 def doCustomChecks(self):

 import os
 if os.path.exists(self.fileNameKw.getValue()):
 db = self.getCurrentDialog()
 showAFXWarningDialog(db,
 'File already exists.\n\nOK to overwrite?',
 AFXDialog.YES|AFXDialog.NO, self,
 self.ID_OVERWRITE)
 return False

 return True

 def onCmdOverwrite(self, sender, sel, ptr):

 if sender.getPressedButtonId() == \
 AFXDialog.ID_CLICKED_YES:
 self.issueCommands(writeToReplay=True,
 writeToJournal=True)
 return 1

Normally the GUI infrastructure takes care of sending commands to the kernel automatically when the mode is
committed. If you need to issue a command before the mode is committed, you can call issueCommands
yourself. In other cases you may want to send a command without using the form's infrastructure. You can send
a command string directly to the kernel using the sendCommand(cmd) method. For more information, see
Executing commands.

Abaqus GUI Toolkit User's Guide164

Command processing

deactivate

After the mode has issued its commands successfully, it will call the deactivate method to perform various
cleanup tasks, unless the mode loops or an “Apply” button was pressed, in which case the mode returns to wait
for further input from the user. If you need to perform your own cleanup tasks for your mode, you can overwrite
this method; but you should be sure to call the base class method as well to ensure that the mode is terminated
properly as shown in the following example.

def deactivate(self):

 # Do your processing here

 # Call the base class method
 AFXForm.deactivate(self)

cancel

If you need to cancel a mode programmatically, as opposed to the user clicking on a Cancel button, you can call
the mode's cancel method, taking the default values for its arguments. The cancel method will call the
deactivate method, so the mode's cleanup tasks will still be performed.

If you want to give the user a chance to confirm whether a mode should be cancelled, you can have a bailout
dialog invoked. If you are writing a form mode, you can specify the bailout flag in the constructor of your dialog
box. If you are writing a procedure mode, you should write the checkCancel method. The return value of the
checkCancel method determines if the user will be prompted for confirmation when the procedure is cancelled.
For example:

def checkCancel(self):

 if self.getCurrentStep() == self.step1:
 # If cancelled in the first step, do not
 # ask the user for confirmation to cancel.
 return AFXProcedure.BAILOUT_OK
 else:
 # After the first step, ask the user for
 # confirmation before cancelling.
 return AFXProcedure.BAILOUT_NOTOK

By default when the context changes in Abaqus/CAE, all forms are cancelled; for example, when the user opens
a new database or changes the current model. If you have a form mode that you do not want to be cancelled, you
can overwrite the base class implementation in your form code as follows:

def okToCancel(self):
 return False

165Abaqus GUI Toolkit User's Guide

Command processing

Work in progress

If the command sent to the kernel takes more than a certain amount of time (approximately one second), the GUI will
lock and the busy cursor will be displayed. If you want to provide additional feedback about the progress of your
command, you can add work-in-progress commands to your kernel code.
For more information, see Status commands.

The following statements illustrate how you can use the milestone command to provide feedback on the progress
of a volume computation:

numObjects = 4
for i in range(numObjects+1):
 milestone('Computing total volume', 'parts', i, numObjects)
 ...

compute volume here

 ...

Figure 1: Displaying the progress of a command.

Abaqus GUI Toolkit User's Guide166

Work in progress

Command error handling

If the command sent to the kernel raises an exception, the mode infrastructure calls the handleException method.
The handleException posts an error dialog with the message contained in the exception. Alternatively, if you
want to perform your own error handling, you can redefine the handleException method.

You can redefine the handleException method as shown in the following example:

def handleException(self, exception):

 exceptionType = exception[0]
 exceptionValue = exception[1]

 # Do some special error handling here

 # Post an error dialog
 #

 db = self.getCurrentDialog()
 showAFXErrorDialog(db, str(exceptionValue))

167

Command error handling

Form modes

A form mode gathers input from the user using one or more dialog boxes. This section describes the two methods
used by forms for posting dialog boxes.

In this section:

• Form example

• Form constructor

• getFirstDialog

• getNextDialog

• Collecting input from the GUI

Abaqus GUI Toolkit User's Guide168

Form example

The following example illustrates how to write a form mode.

This first example contains only one dialog box; a subsequent example will extend this form to include multiple dialog
boxes.

from abaqusGui import *
from plateDB import PlateDB

class PlateForm(AFXForm):

 #~~~
 def __init__(self, owner):

 AFXForm.__init__(self, owner)

 self.cmd = AFXGuiCommand(self, 'Plate', 'examples')
 self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
 self.widthKw = AFXFloatKeyword(self.cmd, 'width', True)
 self.heightKw = AFXFloatKeyword(self.cmd, 'height', True)

 #~~~
 def getFirstDialog(self):

 self.cmd.setKeywordValuesToDefaults()
 return PlateDB(self)

169

Form example

Form constructor

You begin writing a form mode by deriving a new class from AFXForm.

In the body of the AFXForm constructor you must call the base class constructor and pass in the owner, which is the
module or toolset GUI to which this form belongs.

You then define the commands and keywords that the mode will use. The keywords are stored as members of the mode
so that they can be accessed by dialog boxes. If you set registerQuery=True in the AFXGuiCommand constructor,
the mode will query the kernel object specified by the command when it is activated and will automatically set the
values of the command's keywords. For more information, see Keeping the GUI and commands up-to-date. If there is
no kernel object associated with your command (for example, when creating a new object), you can set the keyword
values by specifying a default value in the constructor.

If you have a default object that you want to use to reestablish default values for the dialog box, you can use the mode’s
registerDefaultsObject method to register an object whose values will be queried when the user presses the
Defaults button in the dialog box. For more information, see Defaults objects.

By default, dialog boxes are posted as modeless or nonmodal. You can change the behavior by calling
setModal(True) to have a dialog box posted as modal. In most cases you set the behavior only once; however,
you can change the behavior as often as needed by calling the setModal method in the getFirstDialog or
getNextDialog methods. For more information, see Modal versus modeless.

Abaqus GUI Toolkit User's Guide170

Form constructor

getFirstDialog

You must write the getFirstDialog method for your mode.

The getFirstDialog method should return the first dialog box of the mode. In Form example a pointer to the form
is passed into the dialog box constructor. The dialog box will use this pointer to access the mode's keywords.

If you want the same default values to appear every time you post the dialog box, you must call the
setKeywordValuesToDefaults() method before returning the dialog box, as shown in Form example.

171

getFirstDialog

getNextDialog

If your mode contains more than one dialog box, you must write the getNextDialog method in addition to the
getFirstDialog method.

The previous dialog box is passed into the getNextDialog method so that you can determine where the user is in
the sequence of dialog boxes and act accordingly. The getNextDialog method should return the next dialog box
in the sequence, or it should return None to indicate that it has finished collecting input from the user. The following
example is a modified version of the example in getFirstDialog that illustrates how inputs are collected from the user
in a series of three dialog boxes rather than just one:

def getFirstDialog(self):

 self.dialog1 = PlateDB1(self)
 return self.dialog1

def getNextDialog(self, previousDb):

 if previousDb == self.dialog1:
 self.dialog2 = PlateDB2(self)
 return self.dialog2
 elif previousDb == self.dialog2:
 self.dialog3 = PlateDB3(self)
 return self.dialog3
 else:
 return None

Abaqus GUI Toolkit User's Guide172

getNextDialog

Collecting input from the GUI

To collect input from the user via the GUI, the keywords defined in the mode must be connected to widgets in the
dialog box.

The AFXDataDialog class takes a mode argument in its constructor. Because the form stores keywords, the dialog
box can access these keywords and assign them to be targets of widgets in the dialog box. As a result, the GUI can
update the keywords; or, if the kernel is updated while the dialog box is posted, the keywords can update the GUI. For
more information, see Dialog boxes. The following example shows how the form's keywords are connected to the
widgets in the dialog box:

class PlateDB(AFXDataDialog):

 def __init__(self, mode):

 AFXDataDialog.__init__(self, mode, 'Create Plate',
 self.OK|self.CANCEL, DIALOG_ACTIONS_SEPARATOR)

 va = AFXVerticalAligner(self)
 AFXTextField(va, 15, 'Name:', mode.nameKw, 0)
 AFXTextField(va, 15, 'Width:', mode.widthKw, 0)
 AFXTextField(va, 15, 'Height:', mode.heightKw, 0)

173

Collecting input from the GUI

Procedure modes

A procedure consists of a series of steps that collect input from the user.

In this section:

• Procedure example

• Procedure constructor

• getFirstStep

• getNextStep

• getLoopStep

• AFXDialogStep

Abaqus GUI Toolkit User's Guide174

Procedure example

This section provides an example of how to write a one-step procedure mode.

Steps in a procedure are posted using the following methods:

• getFirstStep

• getNextStep

• getLoopStep

The following types of steps are available for use in procedures:

• AFXDialogStep. This step provides an interface to a dialog box.

• AFXPickStep. This step provides an interface to allow picking entities in the viewport.

The following example shows how to write a simple, one-step procedure mode that uses a dialog box step. Subsequent
examples will extend this example to show how to use more steps.

from abaqusGui import *
from plateDB import PlateDB

class PlateProcedure(AFXProcedure):

 #~~~
 def __init__(self, owner):

 AFXProcedure.__init__(self, owner)

 self.cmd = AFXGuiCommand(self, 'Plate', 'examples')
 self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
 self.widthKw = AFXFloatKeyword(self.cmd, 'width', True)
 self.heightKw = AFXFloatKeyword(self.cmd, 'height', True)

 #~~
 def getFirstStep(self):

 self.cmd.setKeywordValuesToDefaults()
 db = PlateDB(self)
 return AFXDialogStep(self, db)

175

Procedure example

Procedure constructor

You begin writing a procedure mode by deriving a new class from AFXProcedure.

In the body of the AFXProcedure constructor you must call the base class constructor and pass in the owner, which
is the module or toolset GUI to which this procedure belongs. Optionally, you can pass in a value for the type of
procedure. The default value for the type is NORMAL. The type defines what happens when a new procedure is
activated while another procedure is currently executing.

The type of a procedure can be either NORMAL or SUBPROCEDURE. When a normal procedure is activated, it
cancels any procedure that is currently executing. When a subprocedure is activated, it suspends a normal procedure
or cancels another subprocedure. If a procedure is suspended, it resumes upon the completion of the subprocedure.

View procedures (for example, pan, rotate, and zoom) are special types of procedures that cannot be suspended. View
procedures are always cancelled when another procedure is activated, and they always suspend any currently executing
procedure when they are activated.

By default, procedures are identified by the infrastructure using their class name. If you need to have multiple instances
of a procedure executing at the same time, you will need to distinguish their names to the infrastructure by calling the
setModeName method.

After you have derived a new class from AFXProcedure, you define the commands and keywords needed for the
mode. The keywords are stored as members of the mode so that they can be accessed by steps. If you set
registerQuery=True in the AFXGuiCommand constructor, the mode will query the kernel object specified by
the command when it is activated and automatically set the values of the command's keywords. For more information,
see Keeping the GUI and commands up-to-date. If there is no kernel object associated with your command (for example,
when creating a new object), you can set the keyword values by specifying a default value in their constructor.

If you have a default object that you want to use to reestablish default values for a dialog box, you can use the mode’s
registerDefaultsObject method to register an object whose values will be queried when the user presses the
Defaults button in the dialog box. For more information, see Defaults objects.

By default, dialog boxes are posted as modeless. You can post a dialog box as modal by calling
self.setModal(True). In most cases you set the modality only once in the mode; however, you can change the
modality as often as needed by calling the setModal method in the getFirstDialog or getNextDialog
methods. For more information, see Modal versus modeless.

Abaqus GUI Toolkit User's Guide176

Procedure constructor

getFirstStep

You must always write the getFirstStep method for your mode. The getFirstStep method should return the
first step of the mode.

In Procedure example a pointer to the procedure is passed into the dialog box constructor. The dialog box will use this
pointer to access the mode's keywords.

If you want the same default values to appear every time you post the dialog box, you must call the
setKeywordValuesToDefaults() method before returning the dialog box, as shown in Procedure example.

177

getFirstStep

getNextStep

If your mode contains more than one step, you must write the getNextStep method in addition to the
getFirstStep method.
The previous step is passed into the getNextStep method so that you can determine where the user is in the sequence
of steps and act accordingly.

The getNextStep method should return the next step in the sequence, or it should return None to indicate that it
has finished collecting input from the user. The following example, which is a modified version of the example in
Procedure example, illustrates how inputs are collected from the user in a series of three steps rather than just one:

#~~
def getFirstStep(self):

 self.cmd.setKeywordValuesToDefaults()
 self.plateWidthDB = None
 self.plateHeightDB = None
 db = PlateNameDB(self)
 self.step1 = AFXDialogStep(self, db)
 return self.step1

#~~
def getNextStep(self, previousStep):

 if previousStep == self.step1:
 if not self.plateWidthDB:
 self.plateWidthDB = PlateWidthDB(self)
 self.step2 = AFXDialogStep(self, self.plateWidthDB)
 return self.step2

 elif previousStep == self.step2:
 if not self.plateHeightDB:
 self.plateHeightDB = PlateHeightDB(self)
 self.step3 = AFXDialogStep(self, self.plateHeightDB)
 return self.step3

 else:
 return None

Abaqus GUI Toolkit User's Guide178

getNextStep

getLoopStep

If you want your procedure to loop, you must write the getLoopStep method.

The getLoopStep method is defined in the base class to return None, indicating that the mode will be run through
a single time. You can redefine the getLoopStep method and return a step to which the procedure should loop back.
The following example shows how you can make the procedure shown in the previous section loop back to the first
step after it has completed the last step:

def getLoopStep(self):
 return self.step1

179

getLoopStep

AFXDialogStep

The AFXDialogStep class allows you to post a dialog box during a procedure.

To create a dialog step, you must supply the procedure, a dialog box, and, optionally, a prompt for the prompt line. If
you do not supply a prompt, Abaqus uses a default prompt of Fill out the dialog box title dialog.
The following is an example of a dialog step in a single step procedure:

def getFirstStep(self):

 db = PlateDB(self)
 prompt = 'Enter plate dimensions in the dialog box'
 return AFXDialogStep(self, db, prompt)

In most cases a procedure will have more than one step. Since a procedure has the ability to back up to previous steps,
you must write procedures that do not construct dialog boxes more than once during the procedure. You can prevent
a procedure from constructing dialog boxes more than once by initializing procedure members and then checking the
members during getNextStep, as shown in the following example:

def getFirstStep(self):

 self.plateWidthDB = None
 self.plateHeightDB = None
 db = PlateNameDB(self)
 self.step1 = AFXDialogStep(self, db)
 return self.step1

def getNextStep(self, previousStep):

 if previousStep == self.step1:
 if not self.plateWidthDB:
 self.plateWidthDB = PlateWidthDB(self)
 self.step2 = AFXDialogStep(self, self.plateWidthDB)
 return self.step2

 elif previousStep == self.step2:
 if not self.plateHeightDB:
 self.plateHeightDB = PlateHeightDB(self)
 self.step3 = AFXDialogStep(self, self.plateHeightDB)
 return self.step3

 else:
 return None

Abaqus GUI Toolkit User's Guide180

AFXDialogStep

Picking in procedure modes

This section describes picking in procedure modes.

In this section:

• AFXPickStep

• Refining what the user can select

• Nonpickable entities

• Highlighting while selecting

• Selection options

• Allowing the user to type in points

• Picking by angle

• AFXOrderedPickStep

• Prepopulating a pick step

• Limitations while selecting

181

AFXPickStep

The AFXPickStep class allows the user to pick entities in the current viewport.

You must create the keywords associated with pick steps in the same order as the pick steps in which the keywords
are used. For example, if you have two pick steps, you must create the keyword passed into the first pick step before
you create the second keyword, which is passed into the second pick step. Creating the keywords associated with pick
steps in the same order as the pick steps in which the keywords are used ensures that the necessary setup commands
are issued in the proper order for the command to work correctly.

You can specify many parameters when picking items from the viewport. You specify some of these parameters in the
AFXPickStep constructor, and you specify other parameters by calling various methods of the pick step.

To construct a pick step, you must at least supply the following:

• A procedure

• An object keyword

• A prompt for the prompt line

• A bit flag or flags specifying which type of entities may be picked

The following example shows how you can write a pick step:

class MyProcedure(AFXProcedure):

 def __init__(self, owner):

 AFXProcedure.__init__(self, owner)

 self.cmd = AFXGuiCommand(self, 'myMethod', 'myObject')
 self.nodeKw = AFXObjectKeyword(self.cmd, 'node', True)

 def getFirstStep(self):

 return AFXPickStep(self, self.nodeKw,
 'Select a node', AFXPickStep.NODES)

Optional parameters in the constructor allow you to specify the following:

• Whether the user should pick one entity or one or more entities (AFXPickStep.ONE, the default, or
AFXPickStep.MANY)

• The highlight level (1–4)

• The sequence style (AFXPickStep.ARRAY, the default, or AFXPickStep.TUPLE)

If the user is allowed to pick only one entity, the procedure will automatically advance to the next step after the user
picks an entity; however, the user can back up to the previous step to change the selection. If the user is allowed to
pick one or more entities, the user must commit the selections by clicking mouse button 2 or by clicking the Done

button on the prompt line.

The highlight level controls the color of the selected entities. In some procedures, different colors are used between
steps to distinguish the selections.

The sequence style controls how a sequence of picked objects is represented in the command string. If the sequence
style is AFXPickStep.ARRAY, the picked objects will be represented as the concatenation of slices of arrays; for
example, v[3:4] + v[5:8], where v is a vertex array. You cannot use the AFXPickStep.ARRAY sequence style to pick
a combination of entities with multiple types because only objects of the same type can be concatenated. In addition,
you cannot use the AFXPickStep.ARRAY sequence style to pick interesting points because interesting points are
constructed on-the-fly and are not accessible from slices of an array.

Abaqus GUI Toolkit User's Guide182

AFXPickStep

If the sequence style is AFXPickStep.TUPLE, the picked objects will be represented as a tuple of individual objects;
for example, (v[3], v[5], v[6], v[7]). The style you choose depends on the format accepted by the command that you
intend to issue. Some commands in Abaqus/CAE accept both styles, but some accept only one or the other. For further
details on the arguments to the AFXPickStep constructor, see the Abaqus GUI Toolkit Reference Guide.

183Abaqus GUI Toolkit User's Guide

AFXPickStep

Refining what the user can select

A refinement qualifies the types of pickable entities specified in the AFXPickStep constructor.

The following example shows how to select only straight edges:

step = AFXPickStep(self, self.edgeKw, 'Select a straight edge',
 AFXPickStep.EDGES)
step.setEdgeRefinements(AFXPickStep.STRAIGHT)

By default, no refinements are set. For a complete list of refinements, see the Abaqus GUI Toolkit Reference Guide.

Abaqus GUI Toolkit User's Guide184

Refining what the user can select

Nonpickable entities

By default, the procedure mode prevents previously selected geometric entities from being selected twice in the same
procedure. If you do not want this behavior, you can call the allowRepeatedSelections method.

The following example shows how to allow repeated selections:

step = AFXPickStep(self, self.edgeKw, 'Select a straight edge',
 AFXPickStep.EDGES)
step.allowRepeatedSelections(True)

Disallowing repeated picks works only for geometry items such as vertices, edges, and faces; it does not work for
nodes and elements.

185

Nonpickable entities

Highlighting while selecting

The procedure mode clears all highlighting when the user cancels a procedure. In addition, the procedure mode clears
highlighting in the current step before backing up.

The color of highlighted entities is controlled by the highlight level set in the AFXPickStep constructor.

Abaqus GUI Toolkit User's Guide186

Highlighting while selecting

Selection options

The Selection Options dialog box is automatically available in any pick step.

The available options in the Selection Options dialog box are automatically configured, based on the types of entities
that the user is picking. For example, if the user is picking only faces, only Faces appears in the combo box in the
dialog box. Similarly, if the user is picking a single entity, the drag shape and drag scope buttons are not available. As
a result, procedures generally do not need to set the available selection options explicitly. If you need to set these
options, you can use the procedure's setSelectionOptions method. You must set the procedure selection options
prior to creating the first pick step. For more information, see the Abaqus GUI Toolkit Reference Guide.

Normally a procedure will set these options only at the start of the procedure. However, during the procedure the user
may change the settings, and the modified settings will be retained from step to step during the rest of the procedure.

187

Selection options

Allowing the user to type in points

If you want to allow the user to type in the coordinates of a point as an alternative to picking in the viewport, you can
call the addPointKeyIn method and pass it a tuple keyword.

The addPointKeyIn method posts a text field on the prompt line. The type of the keyword passed into the
addPointKeyIn method determines what values are collected from the user; for example, two or three values and
whether those values are float or integer types. For example, in the constructor of your procedure you could define an
additional keyword as shown in the following code:

 self.pointKw1 = AFXObjectKeyword(self.cmd, 'point', True)
 self.pointKw2 = AFXTupleKeyword(self.cmd, 'point', True,
 3, 3, AFXTUPLE_TYPE_FLOAT)

In one of the steps of your procedure you could add a key-in option, as shown below:

 step = AFXPickStep(self, self.pointKw1, 'Select a point',
 AFXPickStep.POINTS)
 step.addPointKeyIn(self.pointKw2)

If a step has a key-in text field, the user enters some values in the text field, and the user commits the values by pressing
Enter, those values will be used in the command. Alternatively, if a step has a key-in text field and the user selects
an entity in the viewport, that entity will be used in the command, regardless of whether anything was typed in the text
field. The mode automatically takes care of deactivating whichever keyword needs to be deactivated based on these
rules. In the previous example, if the user types in a point, self.pointKw1 will be deactivated and
self.pointKw2 will be activated. In addition, self.pointKw2 will contain the value entered by the user.

Abaqus GUI Toolkit User's Guide188

Allowing the user to type in points

Picking by angle

Picking by face angle or by edge angle is always enabled when appropriate.

For example, picking by face angle is enabled when the user is picking faces. You cannot disable picking by angle.

189

Picking by angle

AFXOrderedPickStep

The AFXOrderedPickStep is a special pick step that preserves the order in which the user picks entities.

For example, when picking four nodes to create a quad element, the order in which the user picks the nodes is important
and must be preserved during picking. The user must pick the entities one at a time and cannot drag select them. In
addition, because this is a single step that treats the picked entities as a single pick, the user cannot backup any of the
individual picks. The step continues to loop until the user clicks the mouse button two.

Abaqus GUI Toolkit User's Guide190

AFXOrderedPickStep

Prepopulating a pick step

In some cases you may want to prepopulate a pick step with some selections.

For example, let's say that you have a procedure that creates an object that includes selecting a region of the model
and you want to allow the user to edit that object. In the edit procedure you will want to prepopulate the region selection
step with the selection that the user originally made when creating the object. You can do this by adding a set of entities
to the pick step as shown below:

step = AFXPickStep(self, self.nodesKw, 'Select some nodes',
 AFXPickStep.NODES, AFXPickStep.MANY, 1, AFXPickStep.ARRAY)
step.addNodeSetSelection('NodeSet-1')

There are similar methods for adding entities from geometry sets (addGeometrySetSelection), element sets
(addElementSetSelection), and surfaces (addSurfaceSelection). When this step is executed the added
entities will automatically be highlighted, and the user can add or remove from that selection.

191

Prepopulating a pick step

Limitations while selecting

Limitations apply to picking procedures.

The following limitations apply:

• The following entities cannot be picked:

- Sets

- Surfaces

• Picking more than one kind of entity at the same time is not supported for a sequence style of ARRAY; for example,
the user cannot pick nodes and elements in the same step.

• Picking Features or Instances cannot be combined with picking other types of entities. In addition, a sequence style
of ARRAY is not supported.

• There is no support for unselecting entities that belong to selected entities. For example, when the user selects a
face, Abaqus also selects all the edges belonging to the selected face. The user cannot unselect one of those edges.

• Probing is not supported.

These limitations may be removed in a future release of the Abaqus GUI Toolkit.

Abaqus GUI Toolkit User's Guide192

Limitations while selecting

GUI modules and toolsets

This part describes how you can create your own modules and toolsets. This part also describes how you can
modify an existing Abaqus/CAE module or toolset.

In this section:

• Creating a GUI module

• Creating a GUI toolset

• Customizing an existing module or toolset

193

GUI modules and toolsets

Creating a GUI module

This section describes how you can create a GUI module.
To create a new GUI module, you must follow these steps:

• Derive a new class from a module base class.

• Create menus in the menu bar.

• Create icons in the toolbar. This step is optional.

• Create icons in the toolbox. This step is optional.

• Create modes to collect input from the user and issue commands. Modes include procedures and dialog boxes.

• Create methods to handle any special behavior not handled by the module’s modes. This step is optional.

These steps are described in detail in the following sections.

In this section:

• Examining a GUI module example

• Registering a GUI module

• Switching to a GUI module

Abaqus GUI Toolkit User's Guide194

Examining a GUI module example

This section shows how to create a module GUI.

In this section:

• GUI module example

• Deriving a new module class

• Tree tabs

• Menu bar items

• Toolbar items

• Toolbox items

• Registering toolsets

• Kernel module initialization

• Instantiating the GUI module

195

GUI module example

This section provides an example of how to create a GUI module.

The AFXModuleGui base class provides various module infrastructure support functions. For example, the
AFXModuleGui base class keeps track of the module’s menus, along with its toolbar and toolbox icons. As a result,
the menus, toolbars, and icons can be swapped in and out automatically as the user changes modules.

The following example shows how to create a module GUI; subsequent sections explain the details of this example.

from abaqusGui import *
from myModes import mode_1, mode_2, mode_3
from myIcons import *
from myToolsetGui import MyToolsetGui
class MyModuleGui(AFXModuleGui):
 #~~~
 def __init__(self):

 # Construct the base class
 #
 mw=getAFXApp().getAFXMainWindow()
 AFXModuleGui.__init__(self, moduleName='My Module',
 displayTypes=AFXModuleGui.PART)
 mw.appendApplicableModuleForTreeTab('Model',
 self.getModuleName())
 mw.appendVisibleModuleForTreeTab('Model',
 self.getModuleName())

 # Menu items
 #
 menu = AFXMenuPane(self)
 AFXMenuTitle(self, '&Menu1', None, menu)
 AFXMenuCommand(self, menu, '&Item 1', None, mode_1,
 AFXMode.ID_ACTIVATE)

 subMenu = AFXMenuPane(self)
 AFXMenuCascade(self, menu, '&Submenu', None, subMenu)
 AFXMenuCommand(self, subMenu, '&Subitem 1', None, mode_2,
 AFXMode.ID_ACTIVATE)

 # Toolbar items
 #
 group = AFXToolbarGroup(self)
 icon = FXXpmIcon(getAFXApp(), iconData1)
 AFXToolButton(group, '\tTool Tip', icon, mode_1,
 AFXMode.ID_ACTIVATE)

 # Toolbox items
 #
 group = AFXToolboxGroup(self)
 icon = FXXPMIcon(getAFXApp(), iconData2)
 AFXToolButton(group, '\tTool Tip', icon, mode_1,
 AFXMode.ID_ACTIVATE)

 popup = FXPopup(getAFXApp().getAFXMainWindow())
 AFXFlyoutItem(popup, '\tFlyout Button1', squareIcon,
 mode_1, AFXMode.ID_ACTIVATE)
 AFXFlyoutItem(popup, '\tFlyout Button 2', circleIcon,
 mode_2, AFXMode.ID_ACTIVATE)
 AFXFlyoutItem(popup, '\tFlyout Button 3', triangleIcon,

Abaqus GUI Toolkit User's Guide196

GUI module example

 mode_3, AFXMode.ID_ACTIVATE)
 AFXFlyoutButton(group, popup)

 # Register toolsets
 #
 self.registerToolset(MyToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOL_PANE)

 #~~~
 def getKernelInitializationCommand(self):
 return 'import myModule'

Instantiate the module
#
MyModuleGui()

197Abaqus GUI Toolkit User's Guide

GUI module example

Deriving a new module class

To create your own module GUI, you begin by deriving a new class from the AFXModuleGui base class. Alternatively,
if there is another module GUI class that provides most of the functionality that you want, you can begin by deriving
from that class and then make modifications.
For more information, see Customizing an existing module or toolset.

Inside the new class constructor body, you must call the base class constructor and pass self as the first argument.
The moduleName is a string used by the GUI infrastructure to identify this module. displayTypes are the flag
or flags that specify the type of object that is being displayed in this module. Possible values are AFXModuleGui.PART,
AFXModuleGui.ASSEMBLY, AFXModuleGui.ODB, AFXModuleGui.XY_PLOT, and AFXModuleGui.SKETCH.
If you specify AFXModuleGui.ASSEMBLY, your module must import the assembly kernel module because the
assembly kernel module is required to initialize some assembly display options. For more information, see Kernel

module initialization.

Abaqus GUI Toolkit User's Guide198

Deriving a new module class

Tree tabs

By default, the tabs in the TreeToolsetGui are not visible when the user switches into a custom module. To specify
that a tab should be visible or applicable to a module, use the appendApplicableModuleForTreeTab and
appendVisibleModuleForTreeTab methods.

The example in GUI module example specifies that the Model tab will be applicable and visible in “My Module.” If
the user is in the Part module and switches to “My Module,” the Results tab will be hidden, and the Model tab will
be made current if it was not already current.

199

Tree tabs

Menu bar items

Menu bar items consist of a menu title that controls a menu pane.
The menu pane, in turn, contains menu commands. Menu commands are buttons that invoke modes.

The example in GUI module example creates a top-level menu pane that contains a submenu. The menu commands in
the submenu specify the mode that the menu command will invoke by sending the mode an activate message. For more
information, see Mode processing. Figure 1 shows the menus and submenus created by the example.

Figure 1: Creating menus.

Abaqus GUI Toolkit User's Guide200

Menu bar items

Toolbar items

Toolbar items are displayed across the top of the main window under the menu bar and consist of a button that contains
an icon.
Toolbar items are placed in a group that is shown only when its module or toolset is current. The group also contains
a separator that provides a visual distinction from the other groups of icons in the toolbar.

The example in GUI module example creates a toolbar group and adds a button to the toolbar. The new button invokes
the same mode that will be invoked by the first menu item in the example. For more information, see Mode processing.

201

Toolbar items

Toolbox items

Toolbox items are displayed along the left edge of the main window and consist of a button that contains an icon.
As with toolbar items, toolbox items are placed in a group that is shown only when its module or toolset is current.
Similarly, toolbox groups are spaced apart to provide a visual distinction from the other groups of icons in the toolbox.

The example in GUI module example creates a toolbox group and adds a button to the toolbox. The new button invokes
the same mode as the first menu item in the example.

Toolboxes can also contain flyout menus. When the user presses mouse button 1 on the flyout button and holds it down
for a certain time span, a flyout button displays a popup window containing buttons. If the user just quickly clicks
mouse button 1 on the flyout button, the flyout popup is not displayed and the flyout button acts as a regular button.
A flyout button displays an icon for the current function along with a triangle in the lower right corner. Figure 1 shows
the flyout buttons created by the example.

Figure 1:Toolbox flyout buttons.

Abaqus GUI Toolkit User's Guide202

Toolbox items

Registering toolsets

Modules can include toolsets simply by registering them.
Toolsets that are registered with a module will be available when that module is the current module.

To register a toolset, you supply a pointer to the toolset along with bit flags that specify where in the GUI the toolset
has defined components. The following locations are supported:

LOCATION IN GUIFLAG

Toolset has no components in standard locations.GUI_IN_NONE

Toolset has components in the menu bar.GUI_IN_MENUBAR

Toolset has components in the Tools menu pull down pane.GUI_IN_TOOL_PANE

Toolset has components in the toolbar.GUI_IN_TOOLBAR

Toolset has components in the toolbox.GUI_IN_TOOLBOX

The example in GUI module example registers a toolset that contains elements in the main menu bar and the Tools
menu.

If you do not specify a flag in an area in which you have created some GUI components, those components will not
be shown in the application.

203

Registering toolsets

Kernel module initialization

In general, a GUI module is designed to provide an interface to a kernel module.
After the GUI collects input from the user, it constructs a command string that is sent to the kernel for processing. For
the command to be recognized on the kernel side, the appropriate kernel module must have been imported before the
command was sent.

When a GUI module is loaded for the first time, a special method named getKernelInitializationCommand
is executed. This method is empty in the base class implementation, and it is up to you to write a method that returns
the proper command that will import the appropriate modules on the kernel side. The appropriate modules include any
module for which your GUI module can issue commands. If more than one module is required, you can separate the
statements by semi-colons or “\n” characters. To avoid name space conflicts with modules loaded by Abaqus, you
should use the import moduleName style for importing modules and not the from moduleName import *
style, as shown in the example in GUI module example.

Abaqus GUI Toolkit User's Guide204

Kernel module initialization

Instantiating the GUI module

The final step in the module GUI code is to construct the module.

You can construct the module by calling the module constructor at the end of the module GUI file. This will construct
all the objects defined in the constructor body For example,

MyModuleGui()

205

Instantiating the GUI module

Registering a GUI module

To make a GUI module accessible to the GUI infrastructure, you must register the module in the main window code.
The register command takes two arguments: one for the name to be displayed in the Module combo box in CAE, and
a second that specifies the name of the module to import.

For more information, see Registering modules. In most cases you register the module in the main window code by
calling the module constructor at the end of the module GUI file.

If the example shown in GUI module example resides in a file named myModuleGui.py, myModuleGui must be
used as the second argument to the registerModule method, as shown in the following statement:

Register modules
#
self.registerModule(
 displayedName='My Module', moduleImportName='myModuleGui')

Abaqus GUI Toolkit User's Guide206

Registering a GUI module

Switching to a GUI module

When the user selects a module from the Module list in the context bar, the GUI infrastructure calls the deactivate
method of the current GUI module and calls the activate method of the GUI module selected by the user.

You can write your own activate or deactivate methods if you need to perform any special processing when
entering or leaving a module. If you need to issue a command to the kernel when the user changes modules, you must
use the sendCommandString method of the AFXModuleGui object to issue the command. If you do not use the
sendCommandString method, the application may hang while trying to process the command. You should enclose
the statements that call the sendCommandString method in a try block to catch any exceptions generated by the
kernel command.

To switch to a GUI module using a script, you can use the switchModule method. For example, if you want to
switch to your module upon application startup, you can add the following line to the application startup file:

switchModule('My Module')

This line should appear just before the app.run() statement.

You can use the setSwitchModuleHook(function) method to set a callback function that will be invoked when
the user switches into a GUI module. Every time the user switches into a GUI module, your function will be called
and the name of the module will be passed into the function. For example,

def onModuleSwitch(moduleName):
 if moduleName == 'Part':
 # Do part module tasks
 elif moduleName == 'Mesh':
 # Do mesh module tasks
 etc.

setSwitchModuleHook(onModuleSwitch)

207

Switching to a GUI module

Creating a GUI toolset

Toolsets are similar to modules, except that they can be used in more than one module. Toolsets typically have
less functionality than modules because toolsets specialize in performing a specific task, such as partitioning.
To create a new GUI toolset, you must follow these steps:

• Derive a new class from a toolset base class.

• Create menus in the menu bar. This step is optional.

• Create items in the Tools menu. This step is optional.

• Create buttons in the toolbar. This step is optional.

• Create buttons in the toolbox. This step is optional.

• Create modes to collect input from the user and to issue commands.

In this section:

• GUI Toolset example

• Creating toolset components

• Registering toolsets

Abaqus GUI Toolkit User's Guide208

GUI Toolset example

The AFXToolsetGui base class provides various toolset infrastructure support functions.

For example, the AFXToolsetGui base class keeps track of the menus in a toolset, along with the toolbar and toolbox
buttons, so that they can be swapped in and out automatically as the user changes modules. To create your own toolset
GUI, you begin by deriving from the AFXToolsetGui class. Alternatively, if there is another module GUI class that
provides most of the functionality that you want, you can begin by deriving from that class and then making
modifications. For more information, see Customizing an existing module or toolset.

The following example shows how to create a new toolset class by deriving from AFXToolsetGui:

from abaqusGui import *

class MyToolsetGui(AFXToolsetGui):

 #~~~
 def __init__(self):

 # Construct the base class
 #
 AFXToolsetGui.__init__(self, toolsetName)
 ...

In the constructor of the new class you call the constructor of the base class. The AFXToolsetGui class takes the
following argument:

toolsetName

A String specifying the name of the toolset. The toolset name provides an identifier for the toolset.

209

GUI Toolset example

Creating toolset components

You create menu, toolbar, and toolbox items in a toolset in the same way that you create those items in a module.

When you create menu, toolbar, and toolbox items in a module, the module is used as the parent. In contrast, when
you create a toolset component such as menu panes, the toolset is used as the parent of the toolset component. The
toolset is used as the parent because the components need to be managed by the toolset when the toolset is swapped
in and out of the GUI. For more information on creating these components, see Creating a GUI module.

Abaqus GUI Toolkit User's Guide210

Creating toolset components

Registering toolsets

You can register a toolset with the main window or with a module.

If you register the toolset with the main window, the toolset will be persistent throughout the session; for example, the
File toolset is always available in an Abaqus/CAE session. In contrast, if you register the toolset with a module, the
toolset will be swapped in and out with that module's menus and icons; for example, the Datum toolset is available in
an Abaqus/CAE session only in selected modules. For more information, see Registering toolsets.

211

Registering toolsets

Customizing an existing module or toolset

The previous sections describe how you can create a new module or toolset by starting from an empty base class
and adding all the functionality that you need. Alternatively, you may find that you want to use most of the
functionality of an existing module or toolset. If a suitable module or toolset exists, it may be easier for you to
derive a new module or toolset from it and then add or remove functionality from it. This chapter describes how
to make various modifications to an existing module or toolset.

In this section:

• Modifying and accessing Abaqus/CAE GUI modules and toolsets

• The File toolset

• The Tree toolset

• The Selection toolset

• The Help toolset

• An example of customizing a toolset

Abaqus GUI Toolkit User's Guide212

Modifying and accessing Abaqus/CAE GUI modules and toolsets

Deriving a new class to create modified Abaqus/CAE modules and toolsets allows you to customize existing
functions without changing the original functions. You can also access existing Abaqus/CAE functions from
within new dialogs that you create with the Abaqus GUI Toolkit.

In this section:

• Abaqus/CAE GUI modules and toolsets

• Accessing Abaqus/CAE functions

213

Abaqus/CAE GUI modules and toolsets

The Abaqus GUI Toolkit is designed to allow you to add your own modules and toolsets.
It is generally not recommended that you modify Abaqus/CAE modules and toolsets because future changes to
Abaqus/CAE may “break” your application. However, if you do have a need to modify some of the Abaqus/CAE
modules or toolsets, you can make changes by deriving a new class from one of them and then adding or removing
components.

To derive a new class, you must know the appropriate class name and you must call that class's constructor in your
constructor. The table below lists the class names and registered names for all the Abaqus/CAE modules that are
available in the Abaqus GUI Toolkit. You can import these class names from abaqusGui.

When you register a module derived from one of the Abaqus/CAE modules, you must use the name shown in the table
for the displayedName argument in the main window's registerModule method. If you do not use the name shown,
some GUI infrastructure components may not function correctly.

NameClass name

“Part”PartGui

“Property”PropertyGui

“Assembly”AssemblyGui

“Step”StepGui

“Interaction”InteractionGui

“Load”LoadGui

“Mesh”MeshGui

“Optimization”OptimizationGui

“Job”JobGui

“Visualization”VisualizationGui

”Sketch”SketchGui

When you register a toolset, you must specify in the registerToolset method in which locations (the menu bar,
the toolbar, or the toolbox) the toolset creates the widget. If you omit a toolset location flag, the GUI for that toolset
will not appear in that location. The table below shows the class name for each of the Abaqus/CAE toolsets along with
the flags that indicate the locations in which the toolset creates the widgets. You can import these class names from
abaqusGui.

To register the plug-in toolset, you call registerPluginToolset(); you do not use the registerToolset
method.

When you unregister a toolset, you must use the name shown in the table as the argument to the module's
unregisterToolset method.

Toolset locationsNameClass name

GUI_IN_TOOL_PANE“Amplitude”AmplitudeToolsetGui

GUI_IN_MENUBAR | GUI_IN_TOOLBAR “Annotation”AnnotationToolsetGui

GUI_IN_MENUBAR“Canvas”CanvasToolsetGui

GUI_IN_TOOL_PANE“Customize”CustomizeToolsetGui

GUI_IN_TOOLBOX | GUI_IN_TOOL_PANE“Datum”DatumToolsetGui

GUI_IN_TOOLBOX | GUI_IN_TOOL_PANE“Mesh Editor”EditMeshToolsetGui

GUI_IN_MENUBAR | GUI_IN_TOOLBAR“File”FileToolsetGui

Abaqus GUI Toolkit User's Guide214

Abaqus/CAE GUI modules and toolsets

Toolset locationsNameClass name

GUI_IN_MENUBAR | GUI_IN_TOOLBAR“Help”HelpToolsetGui

GUI_IN_MENUBAR“Model”ModelToolsetGui

GUI_IN_TOOLBOX | GUI_IN_TOOL_PANE“Partition”PartitionToolsetGui

GUI_IN_TOOLBAR | GUI_IN_TOOL_PANE“Query”QueryToolsetGui

GUI_IN_TOOL_PANE“Region”RegionToolsetGui

GUI_IN_TOOLBOX | GUI_IN_TOOL_PANE“Repair”RepairToolsetGui

GUI_IN_TOOLBAR“Selection”SelectionToolsetGui

GUI_IN_MENUBAR“Tree”TreeToolsetGui

GUI_IN_MENUBAR | GUI_IN_TOOLBAR“View Manipulation”ViewManipToolsetGui

For an example of how to register the toolsets and modules used by Abaqus/CAE, see Main window example. The
following statements show how you could add your own toolset to the Visualization module:

File myVisModuleGui.py:

 from abaqusGui import *
 from myToolsetGui import MyToolsetGui

 class MyVisModuleGui(VisualizationGui):

 def __init__(self):

 # Construct the base class.
 #
 VisualizationGui.__init__(self)

 # Register my toolset.
 #
 self.registerToolset(MyToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOLBOX)

 MyVisModuleGui()

File myMainWindow.py:

 from abaqusGui import *

 class MyMainWindow(AFXMainWindow):

 def __init__(self, app, windowTitle=''):

 ...
 self.registerModule('Visualization',
 'myVisModuleGui')
 ...

If you derive a toolset from an Abaqus/CAE toolset, you must construct that toolset using the makeCustomToolsets
method of AFXMainWindow. You must use the makeCustomToolsets method to ensure that the toolset is created
at the appropriate time during application startup. This will avoid any conflicts with Abaqus/CAE modules that also
make use of the module. For example, if you derive a new toolset from the Datum toolset, you must create the new
toolset in makeCustomToolsets. This approach is illustrated in the following example. The new toolset will also
appear in the Part module in place of the standard Datum toolset.

In your main window file:

215Abaqus GUI Toolkit User's Guide

Abaqus/CAE GUI modules and toolsets

 class MyMainWindow(AFXMainWindow):

 def __init__(self, app, windowTitle=''):

 ...
 def makeCustomToolsets(self):

 from myDtmToolsetGui import MyDtmGui
 # Store the toolset as a member of the main window if
 # you want to register it in one of your modules too.
 #
 self.myDtmGui = MyDtmGui()

In your module GUI file:

 class MyModuleGui(AFXModuleGui):

 def __init__(self):

 ...
 mw = getAFXApp().getAFXMainWindow()
 self.registerToolset(mw.myDtmGui,
 GUI_IN_TOOL_PANE|GUI_IN_TOOLBOX)

Abaqus GUI Toolkit User's Guide216

Abaqus/CAE GUI modules and toolsets

Accessing Abaqus/CAE functions

If you want to launch an Abaqus/CAE function from your own dialog, you can do so by connecting the appropriate
target and selector to one of your buttons.

You can get the target and selector for a particular function by using the main window's getTargetFromFunction
and getSelectorFromFunction methods. For example:

 mainWindow = getAFXApp().getAFXMainWindow()
 target = mainWindow.getTargetFromFunction('Part->Create')
 selector = mainWindow.getSelectorFromFunction('Part->Create')
 FXButton(self, 'Create Part...', tgt=target, sel=selector)

The list of valid function names can be found in the Functions tab page in the Tools->Customize dialog box.

217

Accessing Abaqus/CAE functions

The File toolset

The File toolset contains a method called getPrintForm that allows you to access the form that posts the Print

dialog box.
See Print dialog box for an example of how to use the getPrintForm method.

In addition, the Abaqus GUI Toolkit provides two virtual methods that you can modify to change the behavior of your
application when a database is opened. Normally, after an output database is opened, Abaqus/CAE will enter the
Visualization module. Similarly, if you are in the Visualization module and you open a model database, Abaqus/CAE
enters the first module listed in the Module list in context bar. To change this behavior, you can overwrite the
switchToOdbModule and switchToMdbModule methods. These methods return True if they are successful.
For example:

from abaqusGui import *

class MyFileToolsetGui(FileToolsetGui):

 def switchToMdbModule(self):

 # Always switch to the Property module
 currentModuleGui = getCurrentModuleGui()
 if currentModuleGui and \
 currentModuleGui.getModuleName() != 'Property':
 switchModule('Property')
 return True

 def switchToOdbModule(self):

 # Do not switch modules
 return True

Abaqus GUI Toolkit User's Guide218

The File toolset

The Tree toolset

The Tree toolset provides a tabbed area that contains the Model Tree and the Results Tree in Abaqus/CAE.
For more information, see Working with the Model Tree and the Results Tree. The Tree toolset contains the following
methods that you can use to customize the appearance of the tabbed area:

• The makeModelTab method creates the tab that contains the Model Tree. The name of the tab is “Model.”

• The makeMaterialLibraryTab method creates the tab that contains the Material Library. The name of the
tab is “Material Library.”

• The makeResultsTab method creates the tab that contains the Results Tree. The name of the tab is “Results.”

• The makeTabs method calls all of the methods listed above.

In addition, the main window has an appendTreeTab method that creates a new tab item in the tabbed area and
returns a vertical frame into which you can add your widgets. If you want to simply add a tab after the Model and
Results tabs, you can use appendTreeTab from within your custom code. However, if you want to change the order
of the tabs or remove one of the standard tabs, you must derive your own toolset from the Tree toolset. For example:

class MyTreeToolsetGui(TreeToolsetGui):

 def makeTabs(self):

 self.makeModelTab()
 self.makeMyTab()
 self.makeMaterialLibraryTab()
 self.makeResultsTab()

 def makeMyTab(self):

 vf = getAFXApp().getAFXMainWindow().appendTreeTab(
 'My Tab', 'My Tab')
 FXLabel(vf, 'This is my tab item')

The first argument to the appendTreeTab method is the text that you want to show up in the tab button. The second
argument is the name of the tab, which is used for identification purposes in various application programming interfaces,
such as setCurrentTreeTab(name).

By default, when you create a tab it will be visible in all modules, and it will be applicable to all modules. If you do
not want your tab to be visible or applicable to all modules, you can use the setApplicabilityForTreeTab
and setVisibilityForTreeTab methods. When the user switches to a new module, the application will check
to see if the current tab is visible in and applicable to the new module. If the tab is not visible, it will be hidden. If it
is not applicable, the application will search for the first tab that is applicable to the new module and make that tab
current. For example:

 def makeMyTab(self):

 vf = getAFXApp().getAFXMainWindow().appendTreeTab(
 'My Tab', 'My Tab')
 getAFXApp().getAFXMainWindow().setApplicabilityForTreeTab(
 'My Tab', 'Part, Property')
 getAFXApp().getAFXMainWindow().setVisibilityForTreeTab(
 'My Tab', 'Part, Property')

 FXLabel(vf, 'This is my tab')

In this case, when the user is in the Part module, My Tab will be shown. If the user clicks on My Tab to make it
current and then switches to the Property module, My Tab will remain visible and current. If the user switches to the
Step module, My Tab will be hidden and the Model tab will become current (because it has been defined as applicable
to all modules except the Visualization module).

219

The Tree toolset

The Selection toolset

The Selection toolset provides a selection capability outside of any procedure.
In other words, it allows users to select objects and then invoke a procedure, instead of invoking the procedure and
then selecting the objects.

Each module defines a set of entities that can be selected in that module. If you create your own module, then you
should set the appropriate selectable entities when your module gets activated. You can use the getToolset method
of the main window to get the selection toolset, and then use the setFilterTypes method of the selection toolset.

• setFilterTypes(types, defaultType)

Use the following flags for the types and defaultType arguments:

• SELECTION_FILTER_NONE

• SELECTION_FILTER_ALL

• SELECTION_FILTER_VERTEX

• SELECTION_FILTER_EDGE

• SELECTION_FILTER_FACE

• SELECTION_FILTER_CELL

• SELECTION_FILTER_DATUM

• SELECTION_FILTER_REF_POINT

• SELECTION_FILTER_NODE

• SELECTION_FILTER_ELEMENT

• SELECTION_FILTER_FEATURE

For example:

class MyModuleGui(AFXModuleGui):

 ...

 def activate(self):

 toolset = getAFXApp().getAFXMainWindow().getToolset(
 'Selection')
 toolset.setFilterTypes(
 SELECTION_FILTER_CELL|SELECTION_FILTER_FACE,
 SELECTION_FILTER_FACE)
 AFXModuleGui.activate(self)

Abaqus GUI Toolkit User's Guide220

The Selection toolset

The Help toolset

The Help toolset contains special methods that allows you to add your own logo and copyright information to the
Help->About Abaqus dialog box.

Customized applications must show the standard copyright information displayed by Abaqus/CAE or Abaqus/Viewer.
In addition, you can customize the copyright information at the top of the About Abaqus dialog box using the following
methods:

• setCustomCopyrightStrings(customCopyrightVersion, customCopyrightInfo)

• setCustomLogoIcon(logoIcon)

For example:

from abaqusGui import *
from sessionGui import HelpToolsetGui
from myIcons import *
...

class MyMainWindow(AFXMainWindow):

 def _init_(self, app, windowTitle='')

 ...

 # Add custom copyright info to the About Abaqus dialog.
 #
 helpToolset = HelpToolsetGui()
 product = getAFXApp().getProductName()
 major, minor, update = getAFXApp().getVersionNumbers()
 prerelease = getAFXApp().getPrerelease()
 if prerelease:
 release = '%s %s.%s-PRE%s' % (
 product, major, minor, update)
 else:
 release = '%s %s.%s-%s' % (
 product, major, minor, update)
 info = 'Copyright 2003\nMy Company'
 helpToolset.setCustomCopyrightStrings(release, info)
 icon = FXXPMIcon(app, myIconData)
 helpToolset.setCustomLogoIcon(icon)
 self.registerHelpToolset(helpToolset, GUI_IN_MENUBAR)

An alternative way to provide help in your application is to use special methods that allow you to post a URL in a web
browser. For example:

from uti import webBrowser
status = webBrowser.displayURL('http://www.3ds.com/simulia')
status = webBrowser.openWithURL(
 'file://D:/users/someUser/someFile.html')

You can use any valid URL syntax, such as “http” or “file.” displayURL will display the URL in a currently open
browser window (if there are none, it will open a new window). openWithURL will always open a new browser
window. No exceptions are thrown, but you can check the return status of these methods for success.

221

The Help toolset

An example of customizing a toolset

To modify an existing toolset, you start by deriving a new class from it.

To modify widgets in the toolset, you need to be able to access them. The following functions in the Abaqus GUI
Toolkit allow you to access a widget:

• getWidgetFromText(widget, text): The getWidgetFromText function returns a widget whose
label or tip text matches the specified text and is also a child of the specified widget. For example, the following
statement returns the widget that matches the Save As... item in the File menu:

saveAsWidget = getWidgetFromText(fileMenu, 'Save As...')

• getSeparator(widget, index): The getSeparator function returns the nth separator of the specified
widget, where n is specified by the one-based index. For example, the following statement returns the second
separator in the File menu:

separatorWidget = getSeparator(fileMenu, 2)

The following example shows how you can modify the File toolset GUI. Figure 1 shows the File menu before and
after the script is executed.

Figure 1:The toolbar and the File menu before and after executing the example script.

from sessionGui import FileToolsetGui
from myIcons import boltToolboxIconData
from myForm import MyForm

class MyFileToolsetGui(FileToolsetGui):

 #~~~
 def __init__(self):

 # Construct the base class.
 #
 FileToolsetGui.__init__(self)

 # Remove unwanted items from the File menu,
 # including the second separator.
 #
 menubar = getAFXApp().getAFXMainWindow().getMenubar()
 menu = getWidgetFromText(menubar, 'File').getMenu()
 getWidgetFromText(menu, 'New').hide()
 getWidgetFromText(menu, 'Save').hide()
 getWidgetFromText(menu, 'Save As...').hide()
 getSeparator(menu, 2).hide()

Abaqus GUI Toolkit User's Guide222

An example of customizing a toolset

 # Remove unwanted items from the toolbar
 #
 toolbar = self.getToolbarGroup('File')
 getWidgetFromText(toolbar, 'New Model\nDatabase').hide()
 getWidgetFromText(toolbar, 'Save Model\nDatabase').hide()

 # Add an item to the File menu just above Exit
 #
 btn = AFXMenuCommand(self, menu, 'Custom Button...',
 None, MyForm(self), AFXMode.ID_ACTIVATE)
 sep = getSeparator(menu, 6)
 btn.linkBefore(sep)

 # Rename the File menu
 #
 fileMenu = getWidgetFromText(menubar, 'File')
 fileMenu.setText('MyFile')

 # Change a toolbar button icon
 #
 btn = getWidgetFromText(toolbar, 'Open')
 icon = FXXPMIcon(getAFXApp(), boltToolboxIconData)
 btn.setIcon(icon)

This example script illustrates the following:

Deriving a new toolset class

To modify a toolset GUI, you begin by deriving a new class from it. Inside the new class constructor body, you
must call the base class constructor and pass self as the first argument.

Removing items from a menu or toolbar

You can remove items from a menu by hiding them. You use the getWidgetFromText or the getSeparator
functions to obtain the widgets and call the hide method to remove them.

Adding items to a menu

You can insert items into an existing menu by creating new menu commands and positioning them using the
linkBefore or linkAfter methods.

Renaming items and changing icons

You can change the text or icon associated with a widget by calling the setText or setIcon methods.

223Abaqus GUI Toolkit User's Guide

An example of customizing a toolset

Creating a customized application

This part describes how you create a customized application.

In this section:

• Creating an application

• The application object

• The main window

• Customizing the main window

Abaqus GUI Toolkit User's Guide224

Creating a customized application

Creating an application

This chapter explains how to create an application.

In this section:

• About the GUI code

• Startup script

• Licensing and execution

225

About the GUI code

An application consists of the two fundamental pieces: the kernel code and the GUI code.

The kernel code consists of Python modules that contain functions and classes for performing various tasks; for example,
creating parts or postprocessing results. The GUI code provides a convenient, user-friendly mechanism for gathering
the inputs required for the kernel code. Kernel coding is described in the Abaqus Scripting User's Guide and the Abaqus

Scripting Reference Guide.

To develop the GUI code, you begin with a startup script that launches the application from the command line. The
script creates an application object, which interacts with the window manager and controls a main window. The main
window provides components such as a menu bar, a toolbar, and a toolbox. From that core you add functionality to
the application by registering modules and toolsets.

Modules and toolsets are a way of grouping functionality to be presented to the user. For example, the Part module in
Abaqus/CAE groups all the functions related to creating and modifying parts. Abaqus/CAE modules and toolsets can
be included in your application, and you can write your own modules and toolsets to provide custom functionality.

The widget library provides access to various GUI controls (such as push buttons, check buttons, and text fields) that
are used to build dialog boxes. These concepts are illustrated in Figure 1. Each of these steps is described in detail in
subsequent sections.

Starts the application from the command line

Interacts with window manager, controls main window

GUI Infrastructure (main menus, toolbar, toolbox, etc.)

Functionality grouped by task (e. g., Part module, Datum toolset)

Responsible for gathering user input, processing commands

User input mechanisms

GUI controls (buttons, text fields, lists, etc.)

Startup script

Application object

Main window

GUI Modules, Toolsets

Modes

Dialogs, prompts

Widgets

Figure 1: An overview of GUI code.

Abaqus GUI Toolkit User's Guide226

About the GUI code

Startup script

Every application is started from a short startup script.

The startup script performs the following tasks:

• Initializes an application object. The application object is responsible for high-level functions, such as managing
message queues and timers and updating the GUI, and controlling the main window. It is not a visible object.

• Instantiates a main window. The main window is what the user sees when the application is first started and provides
access to all of the application’s functionality.

• Creates and runs the application. Once the application is run, it enters an event loop where it waits to react to user
input, such as the click of a mouse.

The following illustrates a typical startup script.

from abaqusGui import *
import sys
from caeMainWindow import CaeMainWindow

#Define a custom callback, myStartupCB(), that will be invoked
#once the application has finished its startup processing
#
def myStartupCB():
 from myStartupDB import MyStartupDB
 db = MyStartupDB()
 db.create()
 db.show()

Initialize the application object
#
app = AFXApp('Abaqus/CAE', 'SIMULIA')
app.init(sys.argv)
Construct the main window
#
CaeMainWindow(app)

Create the application
#
app.create()

Register the custom startup callback
#
NOTE: This call must be made after app.create()
setStartupCB(myStartupCB)

#Run the application
#
app.run()

The first statement in the script imports all constructors, including the AFXApp constructor, from the abaqusGui
module, which contains access to the entire Abaqus GUI Toolkit. The sys module is also imported since it is needed
to pass arguments into the application’s init method. After the script imports the sys module, it imports the main
window constructor.

This startup script has been customized to include a startup callback function that will display a custom dialog,
MyStartupDB, after the application starts. The callback is defined after the import statements and before the application
is initialized. The next statements instantiate and initialize the application object. The application object is discussed
in more detail in The application object. The script then instantiates the main window. The main window is what the
user will see when the application is started. The main window is discussed in more detail in The main window.

227

Startup script

The application constructor creates all the data structures needed for that object, and the app.create() statement
creates all the GUI windows required by the application object. Next, the custom callback startup function is registered.

The app.run() statement displays the application, including the custom startup dialog, and then enters an event
loop. The event loop then waits for user interaction.

When you start your custom application, you may want to use the –noStartup option in the Abaqus/CAE execution
procedure to prevent Abaqus/CAE from posting its own startup dialog. For more information, see Abaqus/CAE

Execution.

Abaqus GUI Toolkit User's Guide228

Startup script

Licensing and execution

The startup script described in the previous section is run by specifying the name of the script as the argument to the
–custom option on the command line.

To start your application, enter one of the following,

abaqus cae -custom startupScript

abaqus viewer -custom startupScript

where startupScript is the name of the startup script for your application and does not include a file extension. You
are responsible for locating the script in:

• A directory specified in the PYTHONPATH environment variable, or

• One of the locations for external plugins, as described in Where are plug-in files stored?

The first argument to the abaqus command specifies the type of license to be checked out. Specifying abaqus cae
will check out a token named cae that will give you access to all the Abaqus/CAE kernel modules. Specifiying abaqus
viewer will check out a token called viewer that will give you access to only the visualization kernel module.
Therefore, if your application needs to import any Abaqus module other than the Visualization module, you must check
out a cae token.

229

Licensing and execution

The application object

This section describes the Abaqus application object. The application object manages the message queue, timers,
chores, GUI updating, and other system facilities.

In this section:

• The application object

• Common methods

Abaqus GUI Toolkit User's Guide230

The application object

The application object manages the message queue, timers, chores, GUI updating, and other system facilities.

Each application will have an application object, which you typically create in the application’s startup file. For more
information, see Startup script. The constructor for the application object takes the following arguments:

AFXApp(appName, vendorName, productName, majorNumber, minorNumber,
 updateNumber, prerelease)

The application and vendor names are intended to be keys into the registry. The registry is a place to store settings that
are persistent between sessions of the application; for example, the size and location of the application on the desktop
when the application it starts. The registry is currently not used by Abaqus, but these keys are included as placeholders
for future capabilities. The registry will have various sections that allow you to group settings. Some settings may
apply to all products from a particular vendor, and some settings may apply to only a specific product from a vendor.

By default, Abaqus displays the product name and release numbers in the main window's title bar; for more information,
see The title bar.

231

The application object

Common methods

You can access the application object using the following statement: app = getAFXApp().

The following list shows some of the most commonly used application methods:

getAFXMainWindow()

Returns a handle to the main window object.

getProductName()

Returns the product name.

getVersionNumbers()

Returns a tuple of (majorNumber, minorNumber, updateNumber).

getPrerelease()

Returns True if this application is a prerelease.

beep()

Rings the system bell.

Abaqus GUI Toolkit User's Guide232

Common methods

The main window

This section describes the layout, components, and behavior of the Abaqus main window.

In this section:

• About the main window

• The title bar

• The menu bar

• Toolbars

• The context bar

• The module toolbox

• The drawing area and canvas

• The prompt area

• The message area

• The command line interface

233

About the main window

Interactive Abaqus products consist of a single main window that contains several GUI infrastructure components.
The main window itself provides only GUI infrastructure support. You add specific functionality to the application by
registering modules and toolsets with the main window. Registering modules and toolsets is discussed in detail in
Modules and toolsets.

The main window is designed to work with the concept of GUI modules, which contain their own menu bar, toolbar,
and toolbox entries. The main window shows only the components for one module at a time. The main window is
responsible for swapping these components in and out as the user visits the various modules of the application.

The following statement shows the constructor that you use to create the main window:

AFXMainWindow(app, title, icon=None, miniIcon=None,
 opts=DECOR_ALL, x=0, y=0, w=0, h=0)

The following list describes the arguments to the AFXMainWindow constructor:

app

The application object.

title

A String that will be shown in the title bar of the main window.

icon

A 32 × 32 pixel icon used for the application on the desktop.

miniIcon

A 16 × 16 pixel used on Windows for the application in the title bar and system tray.

opts

Flags controlling various window behavior.

x,y,w,h

The X-, Y-location of the window, and the width and height of the window. The default value of zero indicates
that the system should calculate these numbers automatically. The main window size and location are stored in
abaqus_2025.gpr when the application exits so that when the application is started again it will appear in
the same location with the same size. Therefore, it is recommended that you do not set x, y, w, or h in the main
window constructor; however, if you do, those settings will override the settings in abaqus_2025.gpr.

The following statement shows how you can access the main window:

mainWindow = getAFXApp().getAFXMainWindow()

The layout of the main window is shown in Figure 1.

Abaqus GUI Toolkit User's Guide234

About the main window

_ Title string

Persistent toolset menus	

Persistent toolset tools

Module control	

Module menus

			 Module tools�

Context controls

Help

Help/Info

Model�

Tree

Prompt area

Title bar

Menu bar

Toolbar

Context bar

Canvas and drawing area

Module

Toolbox

Message area�
�

Command
line interface

Figure 1:The main window.

235Abaqus GUI Toolkit User's Guide

About the main window

The title bar

By default, the string shown in the title bar is constructed from the arguments passed into the AFXApp constructor.

For example,

AFXApp(appName, vendorName, productName,
 majorNumber, minorNumber, updateNumber, prerelease)

where majorNumber is the version number, minorNumber is the release number, updateNumber is the update
number, and prerelease is the prerelease number.

The title is generated using the format shown in the following statement:

productName + majorNumber + '.' + minorNumber + \
 '-' + updateNumber

For example, the following statement,

AFXApp(productName="Abaqus/CAE",
 majorNumber=6, minorNumber=12, updateNumber=1)

generates the following string in the title bar: Abaqus/CAE 6.12-1

If you do not specify the major, minor, and update numbers in the application constructor, they default to the current
Abaqus/CAE release numbers. Similarly, if you specify release numbers but you do not specify a product name, the
release numbers default to the current Abaqus/CAE release numbers. If you set the prerelease argument in the
AFXApp constructor to True, the update number is preceded by PRE. For example, Abaqus/CAE 6.12-PRE1.

In addition, if the user has opened a model database, the title bar string contains the name of the current model database;
for example, Abaqus/CAE 6.12–1 MDB: C:\projects\cars\engines\turbo-1.cae.

If the name of the current model database, including the path, exceeds 50 characters, the name will be abbreviated by
showing only the first and last 25 characters separated by “…”.

If you do not want the default title processing, you can override it by specifying a title in the AFXMainWindow
constructor. If you specify a title in the AFXMainWindow constructor, the Abaqus GUI Toolkit ignores the arguments
in the application constructor and uses the title specified. The model database name and the name of the current viewport
(when maximized) will continue to be shown in the title bar, even if you override the default title processing.

You can access the string shown in the window title bar using the following statement:

title = getAFXApp().getAFXMainWindow().getTitle()

Abaqus GUI Toolkit User's Guide236

The title bar

The menu bar

The menu bar consists of the following three areas: persistent toolset menus, module menus, and the help menu.

The persistent toolset menus and the help menu are shown when the application is first started, and they remain visible
throughout the user’s session. The module menus reflect the current module and are swapped in and out as the user
visits the various modules. You can access the menu bar using the following statement:

menubar = getAFXApp().getAFXMainWindow().getMenubar()

237

The menu bar

Toolbars

By default, Abaqus/CAE displays all of the toolbars in a row underneath the main menu bar.

File View Manipulation View Options

Render Style

Query
Display Group Color Code

Toolbar grip

Selection

Translucency

View CutVisible Objects

Work Directories

Figure 1:The Abaqus/CAE toolbars.

You can use the following statement to access a toolbar group from the module or toolset that defines the toolbar group:

toolbar = self.getToolbarGroup(toolbarName)

where self is the module or toolset, and toolbarName is the name given to the toolbar when Abaqus/CAE constructs
it. You can determine the names of the toolbars by selecting Tools->Customize from the main menu bar and viewing
the dialog box that appears.

Abaqus GUI Toolkit User's Guide238

Toolbars

The context bar

The context bar contains controls for the current module and other context; for example, the current part.

You can access the context bar using the following statement:

contextBar = getAFXApp().getAFXMainWindow().getContextBar()

239

The context bar

The module toolbox

The module toolbox contains icons for tools commonly used in the current module.

When you switch into a module, that module’s toolbox icons replace those of the previous module. You can access
the module toolbox using the following statement:

toolbox = getAFXApp().getAFXMainWindow().getToolbox()

Abaqus GUI Toolkit User's Guide240

The module toolbox

The drawing area and canvas

The canvas provides an infinite space upon which you can create and manipulate viewports. The drawing area is a
window into the visible part of the canvas.

You can access the canvas area using the following statement:

canvas = getAFXApp().getAFXMainWindow().i_getCanvas()

The “i_” in the method name indicates that this is an internal method that you should not normally use—it is expected
that only the GUI infrastructure needs to access this method.

241

The drawing area and canvas

The prompt area

The prompt area displays prompts to guide the user, as well as work-in-progress (WIP) messages.

You can display messages in the prompt area during procedures. For more information, see Picking in procedure

modes.

Abaqus GUI Toolkit User's Guide242

The prompt area

The message area

The application uses the message area to display informational and warning messages.

You can send messages to the message area using the following method:

mainWindow = getAFXApp().getAFXMainWindow()
mainWindow.writeToMessageArea('Warning: Some items failed!')

243

The message area

The command line interface

The command line interface (CLI) provides an interface to the kernel-side Python command interpreter.

The CLI does not provide any access to the GUI-side Python interpreter. The user can enter Abaqus scripting interface
commands in the CLI, which are then sent to the kernel for processing. In addition, the user can enter standard Python
commands in the CLI. For example, the user can use the CLI as a simple calculator, as shown in Figure 1.

Figure 1:The command line interface.

The Abaqus GUI Toolkit does not expect users to use the CLI to issue Abaqus Scripting Interface commands. Normally
all commands sent from the GUI process are sent by the GUI via modes. For more information, see Modes. You can
hide the CLI if it is not used by your application, as shown in the following statements:

mainWindow = getAFXApp().getAFXMainWindow()
mainWindow.hideCli()

Abaqus GUI Toolkit User's Guide244

The command line interface

Customizing the main window

The main window base class provides the basic infrastructure for the application's user interface.
For example, you can use this base class to enable user interaction in the interface, manipulate modules and
toolsets, and display objects in the viewport. However, this base class does not provide access to any functionality
in the application; for example, you cannot use the base class to create parts or run an analysis job.

This section describes how you can assign functionality to the application by deriving from the main window
base class and then registering modules and toolsets.

In this section:

• Modules and toolsets

• The Abaqus/CAE main window

245

Modules and toolsets

Modules are one of the fundamental concepts of an interactive Abaqus application. A module serves to group
functionality into logical units; for example, a unit that creates parts or a unit that meshes the assembly.

An interactive Abaqus application presents only one module at a time to the user. Presenting only one module makes
the interface less complicated because the interface shows fewer GUI controls and allows the user to focus on one
major task at a time. Abaqus is designed to manipulate modules by swapping in one module’s GUI while swapping
out the previous module’s GUI when requested by the user.

Toolsets are similar to modules in that they group functionality into logical units. However, toolsets generally contain
less functionality than modules because toolsets focus on one particular task; for example, partitioning. Toolsets can
be used in more than one module.

Abaqus GUI Toolkit User's Guide246

Modules and toolsets

The Abaqus/CAE main window

This section describes how you can create an application by deriving a new class from the AFXMainWindow
class and registering the modules and toolsets used by your application.

In this section:

• Main window example

• Importing modules

• Constructing the base class

• Registering persistent toolsets

• Registering modules

247

Main window example

To create a main window for a particular application, you start by deriving a new class from the AFXMainWindow
class.
In the constructor of the main window, you register the modules and toolsets used by your application.

The following script constructs the Abaqus/CAE main window. The script is described in detail in the following
sections. Details of how you construct modules and toolsets are given in Creating a GUI module and Creating a GUI

toolset.

from abaqusGui import *
class CaeMainWindow(AFXMainWindow):
 def __init__(self, app, windowTitle=''):
 # Construct the GUI infrastructure.
 #
 AFXMainWindow.__init__(self, app, windowTitle)

 # Register the "persistent" toolsets.
 #
 self.registerToolset(FileToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
 self.registerToolset(ModelToolsetGui(),
 GUI_IN_MENUBAR)
 self.registerToolset(CanvasToolsetGui(),
 GUI_IN_MENUBAR)
 self.registerToolset(ViewManipToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
 self.registerToolset(TreeToolsetGui(),
 GUI_IN_MENUBAR)
 self.registerToolset(AnnotationToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
 self.registerToolset(CustomizeToolsetGui(),
 GUI_IN_TOOL_PANE)
 self.registerToolset(SelectionToolsetGui(),
 GUI_IN_TOOLBAR)
 registerPluginToolset()
 self.registerHelpToolset(HelpToolsetGui(),
 GUI_IN_MENUBAR|GUI_IN_TOOLBAR)

 # Register modules.
 #
 self.registerModule('Part', 'Part')
 self.registerModule('Property', 'Property')
 self.registerModule('Assembly', 'Assembly')
 self.registerModule('Step', 'Step')
 self.registerModule('Interaction', 'Interaction')
 self.registerModule('Load', 'Load')
 self.registerModule('Mesh', 'Mesh')
 self.registerModule('Job', 'Job')
 self.registerModule('Visualization', 'Visualization')
 self.registerModule('Sketch', 'Sketch')

Abaqus GUI Toolkit User's Guide248

Main window example

Importing modules

The abaqusGui module provides access to the entire Abaqus GUI Toolkit in addition to the modules, such as
FileToolsetGui, that must be registered with the main window.

249

Importing modules

Constructing the base class

The first statement in the CaeMainWindow constructor initializes the class by calling the base class constructor.

In general, you should always call the base class constructor of the class from which you are deriving, unless you know
that you will overwrite the functionality of the class.

Abaqus GUI Toolkit User's Guide250

Constructing the base class

Registering persistent toolsets

Toolsets that are registered with the main window, as opposed to being registered with a module, are available in the
GUI when the application first starts up.
In addition, toolsets that are registered with the main window remain available throughout a session as the user switches
modules.

To register a toolset, you call the registerToolset method and pass in an instance of the toolset class. You can
register a help toolset with the application using the registerHelpToolset method. A toolset that is registered
in this manner always appears to the right of all other menus in the menu bar. For more information, see Registering

toolsets.

Note: Every application must register viewManipToolsetGui.

251

Registering persistent toolsets

Registering modules

Registering modules puts the module names into the Module combo box in the context bar.
The order in which the modules are registered is the order in which the modules will appear in the Module combo box
in the context bar.

To register a module, you call the registerModule method. The registerModule method takes the following
arguments:

displayedName

A string that the application will display in the Module combo box in the context bar.

moduleImportName

A string that specifies the name of the module to be imported. It is your responsibility to ensure that this name
is the same as your GUI module file name (without the .py extension). For more information, see Instantiating

the GUI module.

kernelInitializationCommand

A string that specifies the name of the Python command sent to the kernel when the module is loaded.

Abaqus GUI Toolkit User's Guide252

Registering modules

Icons

The Abaqus GUI Toolkit supports the following formats for creating icons: XPM, BMP, GIF, and PNG.

You can use most image editing programs to produce icon images in one of the supported formats. After you have
created the image file, you construct the icon by calling the appropriate method, as shown in the following example:

icon = afxCreatePNGIcon('myIcon.png')
FXLabel(self, 'A label with an icon', icon)

In some cases you may need to call the icon's create method before using it in a widget. In the previous example,
it is not necessary to call the icon's create method because the label widget creates the icon when the label is created.
However, if you construct an icon after you call the widget's create method, you must call the icon's create method
before you use the icon in the widget. For more information, see The create method.

The format of an XPM icon is simple; and you can use any pixmap editor, or even a text editor, to create the icon data.
More details about the XPM format are available at https://www.x.org/docs/XPM/xpm.pdf. The following image editing
programs support the XPM format:

• ImageMagick (http://www.imagemagick.org)

• The GIMP (http://www.gimp.org)

As an alternative to using the afxCreateXPMIcon method, you can define the XPM image data as a Python list of
strings and create an icon using the FXXPMIcon method, as shown in the following example.

Note: For a list of valid color names and their corresponding RGB values, see Colors and RGB values. To
define a transparent color, you must define it as “c None s None”, not just “c None”.

blueIconData = [
"12 12 2 1",
". c None s None",
" c blue",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" "
]
blueIcon = FXXPMIcon(getAFXApp(),blueIconData)

Figure 1 shows the blue square icon created by this example.

Figure 1:The blue square icon.

253

Icons

Colors and RGB values

When you are specifying a color, some methods require a string and other methods require an FXColor. To create an
FXColor, you use the FXRGB function and pass in the appropriate values for red, green, and blue.

The following table shows a list of valid color strings and the corresponding RGB values.

RGB valueString

FXRGB(240,248,255)AliceBlue

FXRGB(250,235,215)AntiqueWhite

FXRGB(255,239,219)AntiqueWhite1

FXRGB(238,223,204)AntiqueWhite2

FXRGB(205,192,176)AntiqueWhite3

FXRGB(139,131,120)AntiqueWhite4

FXRGB(127,255,212)Aquamarine

FXRGB(127,255,212)Aquamarine1q

FXRGB(118,238,198)Aquamarine2

FXRGB(102,205,170)Aquamarine3

FXRGB(69,139,116)Aquamarine4

FXRGB(240,255,255)Azure

FXRGB(240,255,255)Azure1

FXRGB(224,238,238)Azure2

FXRGB(193,205,205)Azure3

FXRGB(131,139,139)Azure4

FXRGB(245,245,220)Beige

FXRGB(255,228,196)Bisque

FXRGB(255,228,196)Bisque1

FXRGB(238,213,183)Bisque2

FXRGB(205,183,158)Bisque3

FXRGB(139,125,107)Bisque4

FXRGB(0,0,0)Black

FXRGB(255,235,205)BlanchedAlmond

FXRGB(0,0,255)Blue

FXRGB(0,0,255)Blue1

FXRGB(0,0,238)Blue2

FXRGB(0,0,205)Blue3

FXRGB(0,0,139)Blue4

FXRGB(138, 43,226)BlueViolet

FXRGB(165, 42, 42)Brown

FXRGB(255, 64, 64)Brown1

Abaqus GUI Toolkit User's Guide254

Colors and RGB values

RGB valueString

FXRGB(238, 59, 59)Brown2

FXRGB(205, 51, 51)Brown3

FXRGB(139, 35, 35)Brown4

FXRGB(222,184,135)Burlywood

FXRGB(255,211,155)Burlywood1

FXRGB(238,197,145)Burlywood2

FXRGB(205,170,125)Burlywood3

FXRGB(139,115, 85)Burlywood4

FXRGB(95,158,160)CadetBlue

FXRGB(152,245,255)CadetBlue1

FXRGB(142,229,238)CadetBlue2

FXRGB(122,197,205)CadetBlue3

FXRGB(83,134,139)CadetBlue4

FXRGB(127,255,0)Chartreuse

FXRGB(127,255,0)Chartreuse1

FXRGB(118,238,0)Chartreuse2

FXRGB(102,205,0)Chartreuse3

FXRGB(69,139,0)Chartreuse4

FXRGB(210,105, 30)Chocolate

FXRGB(255,127, 36)Chocolate1

FXRGB(238,118, 33)Chocolate2

FXRGB(205,102, 29)Chocolate3

FXRGB(139, 69, 19)Chocolate4

FXRGB(255,127, 80)Coral

FXRGB(255,114, 86)Coral1

FXRGB(238,106, 80)Coral2

FXRGB(205, 91, 69)Coral3

FXRGB(139, 62, 47)Coral4

FXRGB(100,149,237)CornflowerBlue

FXRGB(255,248,220)Cornsilk

FXRGB(255,248,220)Cornsilk1

FXRGB(238,232,205)Cornsilk2

FXRGB(205,200,177)Cornsilk3

FXRGB(139,136,120)Cornsilk4

FXRGB(0,255,255)Cyan

FXRGB(0,255,255)Cyan1

FXRGB(0,238,238)Cyan2

FXRGB(0,205,205)Cyan3

FXRGB(0,139,139)Cyan4

255Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(0,0,139)DarkBlue

FXRGB(0,139,139)DarkCyan

FXRGB(184,134, 11)DarkGoldenrod

FXRGB(255,185, 15)DarkGoldenrod1

FXRGB(238,173, 14)DarkGoldenrod2

FXRGB(205,149, 12)DarkGoldenrod3

FXRGB(139,101,8)DarkGoldenrod4

FXRGB(169,169,169)DarkGray

FXRGB(0,100,0)DarkGreen

FXRGB(169,169,169)DarkGrey

FXRGB(189,183,107)DarkKhaki

FXRGB(139,0,139)DarkMagenta

FXRGB(85,107, 47)DarkOliveGreen

FXRGB(202,255,112)DarkOliveGreen1

FXRGB(188,238,104)DarkOliveGreen2

FXRGB(162,205, 90)DarkOliveGreen3

FXRGB(110,139, 61)DarkOliveGreen4

FXRGB(255,140,0)DarkOrange

FXRGB(255,127,0)DarkOrange1

FXRGB(238,118,0)DarkOrange2

FXRGB(205,102,0)DarkOrange3

FXRGB(139, 69,0)DarkOrange4

FXRGB(153, 50,204)DarkOrchid

FXRGB(191, 62,255)DarkOrchid1

FXRGB(178, 58,238)DarkOrchid2

FXRGB(154, 50,205)DarkOrchid3

FXRGB(104, 34,139)DarkOrchid4

FXRGB(139,0,0)DarkRed

FXRGB(233,150,122)DarkSalmon

FXRGB(143,188,143)DarkSeaGreen

FXRGB(193,255,193)DarkSeaGreen1

FXRGB(180,238,180)DarkSeaGreen2

FXRGB(155,205,155)DarkSeaGreen3

FXRGB(105,139,105)DarkSeaGreen4

FXRGB(72, 61,139)DarkSlateBlue

FXRGB(47, 79, 79)DarkSlateGray

FXRGB(151,255,255)DarkSlateGray1

FXRGB(141,238,238)DarkSlateGray2

FXRGB(121,205,205)DarkSlateGray3

Abaqus GUI Toolkit User's Guide256

Colors and RGB values

RGB valueString

FXRGB(82,139,139)DarkSlateGray4

FXRGB(47, 79, 79)DarkSlateGrey

FXRGB(0,206,209)DarkTurquoise

FXRGB(148,0,211)DarkViolet

FXRGB(255, 20,147)DeepPink

FXRGB(255, 20,147)DeepPink1

FXRGB(238, 18,137)DeepPink2

FXRGB(205, 16,118)DeepPink3

FXRGB(139, 10, 80)DeepPink4

FXRGB(0,191,255)DeepSkyBlue

FXRGB(0,191,255)DeepSkyBlue1

FXRGB(0,178,238)DeepSkyBlue2

FXRGB(0,154,205)DeepSkyBlue3

FXRGB(0,104,139)DeepSkyBlue4

FXRGB(105,105,105)DimGray

FXRGB(105,105,105)DimGrey

FXRGB(30,144,255)DodgerBlue

FXRGB(30,144,255)DodgerBlue1

FXRGB(28,134,238)DodgerBlue2

FXRGB(24,116,205)DodgerBlue3

FXRGB(16, 78,139)DodgerBlue4

FXRGB(178, 34, 34)Firebrick

FXRGB(255, 48, 48)Firebrick1

FXRGB(238, 44, 44)Firebrick2

FXRGB(205, 38, 38)Firebrick3

FXRGB(139, 26, 26)Firebrick4

FXRGB(255,250,240)FloralWhite

FXRGB(34,139, 34)ForestGreen

FXRGB(220,220,220)Gainsboro

FXRGB(248,248,255)GhostWhite

FXRGB(255,215,0)Gold

FXRGB(255,215,0)Gold1

FXRGB(238,201,0)Gold2

FXRGB(205,173,0)Gold3

FXRGB(139,117,0)Gold4

FXRGB(218,165, 32)Goldenrod

FXRGB(255,193, 37)Goldenrod1

FXRGB(238,180, 34)Goldenrod2

FXRGB(205,155, 29)Goldenrod3

257Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(139,105, 20)Goldenrod4

FXRGB(190,190,190)Gray

FXRGB(0,0,0)Gray0

FXRGB(3,3,3)Gray1

FXRGB(26, 26, 26)Gray10

FXRGB(255,255,255)Gray100

FXRGB(28, 28, 28)Gray11

FXRGB(31, 31, 31)Gray12

FXRGB(33, 33, 33)Gray13

FXRGB(36, 36, 36)Gray14

FXRGB(38, 38, 38)Gray15

FXRGB(41, 41, 41)Gray16

FXRGB(43, 43, 43)Gray17

FXRGB(46, 46, 46)Gray18

FXRGB(48, 48, 48)Gray19

FXRGB(5,5,5)Gray2

FXRGB(51, 51, 51)Gray20

FXRGB(54, 54, 54)Gray21

FXRGB(56, 56, 56)Gray22

FXRGB(59, 59, 59)Gray23

FXRGB(61, 61, 61)Gray24

FXRGB(64, 64, 64)Gray25

FXRGB(66, 66, 66)Gray26

FXRGB(69, 69, 69)Gray27

FXRGB(71, 71, 71)Gray28

FXRGB(74, 74, 74)Gray29

FXRGB(8,8,8)Gray3

FXRGB(77, 77, 77)Gray30

FXRGB(79, 79, 79)Gray31

FXRGB(82, 82, 82)Gray32

FXRGB(84, 84, 84)Gray33

FXRGB(87, 87, 87)Gray34

FXRGB(89, 89, 89)Gray35

FXRGB(92, 92, 92)Gray36

FXRGB(94, 94, 94)Gray37

FXRGB(97, 97, 97)Gray38

FXRGB(99, 99, 99)Gray39

FXRGB(10, 10, 10)Gray4

FXRGB(102,102,102)Gray40

Abaqus GUI Toolkit User's Guide258

Colors and RGB values

RGB valueString

FXRGB(105,105,105)Gray41

FXRGB(107,107,107)Gray42

FXRGB(110,110,110)Gray43

FXRGB(112,112,112)Gray44

FXRGB(115,115,115)Gray45

FXRGB(117,117,117)Gray46

FXRGB(120,120,120)Gray47

FXRGB(122,122,122)Gray48

FXRGB(125,125,125)Gray49

FXRGB(13, 13, 13)Gray5

FXRGB(127,127,127)Gray50

FXRGB(130,130,130)Gray51

FXRGB(133,133,133)Gray52

FXRGB(135,135,135)Gray53

FXRGB(138,138,138)Gray54

FXRGB(140,140,140)Gray55

FXRGB(143,143,143)Gray56

FXRGB(145,145,145)Gray57

FXRGB(148,148,148)Gray58

FXRGB(150,150,150)Gray59

FXRGB(15, 15, 15)Gray6

FXRGB(153,153,153)Gray60

FXRGB(156,156,156)Gray61

FXRGB(158,158,158)Gray62

FXRGB(161,161,161)Gray63

FXRGB(163,163,163)Gray64

FXRGB(166,166,166)Gray65

FXRGB(168,168,168)Gray66

FXRGB(171,171,171)Gray67

FXRGB(173,173,173)Gray68

FXRGB(176,176,176)Gray69

FXRGB(18, 18, 18)Gray7

FXRGB(179,179,179)Gray70

FXRGB(181,181,181)Gray71

FXRGB(184,184,184)Gray72

FXRGB(186,186,186)Gray73

FXRGB(189,189,189)Gray74

FXRGB(191,191,191)Gray75

FXRGB(194,194,194)Gray76

259Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(196,196,196)Gray77

FXRGB(199,199,199)Gray78

FXRGB(201,201,201)Gray79

FXRGB(20, 20, 20)Gray8

FXRGB(204,204,204)Gray80

FXRGB(207,207,207)Gray81

FXRGB(209,209,209)Gray82

FXRGB(212,212,212)Gray83

FXRGB(214,214,214)Gray84

FXRGB(217,217,217)Gray85

FXRGB(219,219,219)Gray86

FXRGB(222,222,222)Gray87

FXRGB(224,224,224)Gray88

FXRGB(227,227,227)Gray89

FXRGB(23, 23, 23)Gray9

FXRGB(229,229,229)Gray90

FXRGB(232,232,232)Gray91

FXRGB(235,235,235)Gray92

FXRGB(237,237,237)Gray93

FXRGB(240,240,240)Gray94

FXRGB(242,242,242)Gray95

FXRGB(245,245,245)Gray96

FXRGB(247,247,247)Gray97

FXRGB(250,250,250)Gray98

FXRGB(252,252,252)Gray99

FXRGB(0,255,0)Green

FXRGB(0,255,0)Green1

FXRGB(0,238,0)Green2

FXRGB(0,205,0)Green3

FXRGB(0,139,0)Green4

FXRGB(173,255, 47)GreenYellow

FXRGB(190,190,190)Grey

FXRGB(0,0,0)Grey0

FXRGB(3,3,3)Grey1

FXRGB(26, 26, 26)Grey10

FXRGB(255,255,255)Grey100

FXRGB(28, 28, 28)Grey11

FXRGB(31, 31, 31)Grey12

FXRGB(33, 33, 33)Grey13

Abaqus GUI Toolkit User's Guide260

Colors and RGB values

RGB valueString

FXRGB(36, 36, 36)Grey14

FXRGB(38, 38, 38)Grey15

FXRGB(41, 41, 41)Grey16

FXRGB(43, 43, 43)Grey17

FXRGB(46, 46, 46)Grey18

FXRGB(48, 48, 48)Grey19

FXRGB(5,5,5)Grey2

FXRGB(51, 51, 51)Grey20

FXRGB(54, 54, 54)Grey21

FXRGB(56, 56, 56)Grey22

FXRGB(59, 59, 59)Grey23

FXRGB(61, 61, 61)Grey24

FXRGB(64, 64, 64)Grey25

FXRGB(66, 66, 66)Grey26

FXRGB(69, 69, 69)Grey27

FXRGB(71, 71, 71)Grey28

FXRGB(74, 74, 74)Grey29

FXRGB(8,8,8)Grey3

FXRGB(77, 77, 77)Grey30

FXRGB(79, 79, 79)Grey31

FXRGB(82, 82, 82)Grey32

FXRGB(84, 84, 84)Grey33

FXRGB(87, 87, 87)Grey34

FXRGB(89, 89, 89)Grey35

FXRGB(92, 92, 92)Grey36

FXRGB(94, 94, 94)Grey37

FXRGB(97, 97, 97)Grey38

FXRGB(99, 99, 99)Grey39

FXRGB(10, 10, 10)Grey4

FXRGB(102,102,102)Grey40

FXRGB(105,105,105)Grey41

FXRGB(107,107,107)Grey42

FXRGB(110,110,110)Grey43

FXRGB(112,112,112)Grey44

FXRGB(115,115,115)Grey45

FXRGB(117,117,117)Grey46

FXRGB(120,120,120)Grey47

FXRGB(122,122,122)Grey48

FXRGB(125,125,125)Grey49

261Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(13, 13, 13)Grey5

FXRGB(127,127,127)Grey50

FXRGB(130,130,130)Grey51

FXRGB(133,133,133)Grey52

FXRGB(135,135,135)Grey53

FXRGB(138,138,138)Grey54

FXRGB(140,140,140)Grey55

FXRGB(143,143,143)Grey56

FXRGB(145,145,145)Grey57

FXRGB(148,148,148)Grey58

FXRGB(150,150,150)Grey59

FXRGB(15, 15, 15)Grey6

FXRGB(153,153,153)Grey60

FXRGB(156,156,156)Grey61

FXRGB(158,158,158)Grey62

FXRGB(161,161,161)Grey63

FXRGB(163,163,163)Grey64

FXRGB(166,166,166)Grey65

FXRGB(168,168,168)Grey66

FXRGB(171,171,171)Grey67

FXRGB(173,173,173)Grey68

FXRGB(176,176,176)Grey69

FXRGB(18, 18, 18)Grey7

FXRGB(179,179,179)Grey70

FXRGB(181,181,181)Grey71

FXRGB(184,184,184)Grey72

FXRGB(186,186,186)Grey73

FXRGB(189,189,189)Grey74

FXRGB(191,191,191)Grey75

FXRGB(194,194,194)Grey76

FXRGB(196,196,196)Grey77

FXRGB(199,199,199)Grey78

FXRGB(201,201,201)Grey79

FXRGB(20, 20, 20)Grey8

FXRGB(204,204,204)Grey80

FXRGB(207,207,207)Grey81

FXRGB(209,209,209)Grey82

FXRGB(212,212,212)Grey83

FXRGB(214,214,214)Grey84

Abaqus GUI Toolkit User's Guide262

Colors and RGB values

RGB valueString

FXRGB(217,217,217)Grey85

FXRGB(219,219,219)Grey86

FXRGB(222,222,222)Grey87

FXRGB(224,224,224)Grey88

FXRGB(227,227,227)Grey89

FXRGB(23, 23, 23)Grey9

FXRGB(229,229,229)Grey90

FXRGB(232,232,232)Grey91

FXRGB(235,235,235)Grey92

FXRGB(237,237,237)Grey93

FXRGB(240,240,240)Grey94

FXRGB(242,242,242)Grey95

FXRGB(245,245,245)Grey96

FXRGB(247,247,247)Grey97

FXRGB(250,250,250)Grey98

FXRGB(252,252,252)Grey99

FXRGB(240,255,240)Honeydew

FXRGB(240,255,240)Honeydew1

FXRGB(224,238,224)Honeydew2

FXRGB(193,205,193)Honeydew3

FXRGB(131,139,131)Honeydew4

FXRGB(255,105,180)HotPink

FXRGB(255,110,180)HotPink1

FXRGB(238,106,167)HotPink2

FXRGB(205, 96,144)HotPink3

FXRGB(139, 58, 98)HotPink4

FXRGB(205, 92, 92)IndianRed

FXRGB(255,106,106)IndianRed1

FXRGB(238, 99, 99)IndianRed2

FXRGB(205, 85, 85)IndianRed3

FXRGB(139, 58, 58)IndianRed4

FXRGB(255,255,240)Ivory

FXRGB(255,255,240)Ivory1

FXRGB(238,238,224)Ivory2

FXRGB(205,205,193)Ivory3

FXRGB(139,139,131)Ivory4

FXRGB(240,230,140)Khaki

FXRGB(255,246,143)Khaki1

FXRGB(238,230,133)Khaki2

263Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(205,198,115)Khaki3

FXRGB(139,134, 78)Khaki4

FXRGB(230,230,250)Lavender

FXRGB(255,240,245)LavenderBlush

FXRGB(255,240,245)LavenderBlush1

FXRGB(238,224,229)LavenderBlush2

FXRGB(205,193,197)LavenderBlush3

FXRGB(139,131,134)LavenderBlush4

FXRGB(124,252,0)LawnGreen

FXRGB(255,250,205)LemonChiffon

FXRGB(255,250,205)LemonChiffon1

FXRGB(238,233,191)LemonChiffon2

FXRGB(205,201,165)LemonChiffon3

FXRGB(139,137,112)LemonChiffon4

FXRGB(173,216,230)LightBlue

FXRGB(191,239,255)LightBlue1

FXRGB(178,223,238)LightBlue2

FXRGB(154,192,205)LightBlue3

FXRGB(104,131,139)LightBlue4

FXRGB(240,128,128)LightCoral

FXRGB(224,255,255)LightCyan

FXRGB(224,255,255)LightCyan1

FXRGB(209,238,238)LightCyan2

FXRGB(180,205,205)LightCyan3

FXRGB(122,139,139)LightCyan4

FXRGB(238,221,130)LightGoldenrod

FXRGB(255,236,139)LightGoldenrod1

FXRGB(238,220,130)LightGoldenrod2

FXRGB(205,190,112)LightGoldenrod3

FXRGB(139,129, 76)LightGoldenrod4

FXRGB(250,250,210)LightGoldenrodYellow

FXRGB(211,211,211)LightGray

FXRGB(144,238,144)LightGreen

FXRGB(211,211,211)LightGrey

FXRGB(255,182,193)LightPink

FXRGB(255,174,185)LightPink1

FXRGB(238,162,173)LightPink2

FXRGB(205,140,149)LightPink3

FXRGB(139, 95,101)LightPink4

Abaqus GUI Toolkit User's Guide264

Colors and RGB values

RGB valueString

FXRGB(255,160,122)LightSalmon

FXRGB(255,160,122)LightSalmon1

FXRGB(238,149,114)LightSalmon2

FXRGB(205,129, 98)LightSalmon3

FXRGB(139, 87, 66)LightSalmon4

FXRGB(32,178,170)LightSeaGreen

FXRGB(135,206,250)LightSkyBlue

FXRGB(176,226,255)LightSkyBlue1

FXRGB(164,211,238)LightSkyBlue2

FXRGB(141,182,205)LightSkyBlue3

FXRGB(96,123,139)LightSkyBlue4

FXRGB(132,112,255)LightSlateBlue

FXRGB(119,136,153)LightSlateGray

FXRGB(119,136,153)LightSlateGrey

FXRGB(176,196,222)LightSteelBlue

FXRGB(202,225,255)LightSteelBlue1

FXRGB(188,210,238)LightSteelBlue2

FXRGB(162,181,205)LightSteelBlue3

FXRGB(110,123,139)LightSteelBlue4

FXRGB(255,255,224)LightYellow

FXRGB(255,255,224)LightYellow1

FXRGB(238,238,209)LightYellow2

FXRGB(205,205,180)LightYellow3

FXRGB(139,139,122)LightYellow4

FXRGB(50,205, 50)LimeGreen

FXRGB(250,240,230)Linen

FXRGB(255,0,255)Magenta

FXRGB(255,0,255)Magenta1

FXRGB(238,0,238)Magenta2

FXRGB(205,0,205)Magenta3

FXRGB(139,0,139)Magenta4

FXRGB(176, 48, 96)Maroon

FXRGB(255, 52,179)Maroon1

FXRGB(238, 48,167)Maroon2

FXRGB(205, 41,144)Maroon3

FXRGB(139, 28, 98)Maroon4

FXRGB(102,205,170)MediumAquamarine

FXRGB(0,0,205)MediumBlue

FXRGB(186, 85,211)MediumOrchid

265Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(224,102,255)MediumOrchid1

FXRGB(209, 95,238)MediumOrchid2

FXRGB(180, 82,205)MediumOrchid3

FXRGB(122, 55,139)MediumOrchid4

FXRGB(147,112,219)MediumPurple

FXRGB(171,130,255)MediumPurple1

FXRGB(159,121,238)MediumPurple2

FXRGB(137,104,205)MediumPurple3

FXRGB(93, 71,139)MediumPurple4

FXRGB(60,179,113)MediumSeaGreen

FXRGB(123,104,238)MediumSlateBlue

FXRGB(0,250,154)MediumSpringGreen

FXRGB(72,209,204)MediumTurquoise

FXRGB(199, 21,133)MediumVioletRed

FXRGB(25, 25,112)MidnightBlue

FXRGB(245,255,250)MintCream

FXRGB(255,228,225)MistyRose

FXRGB(255,228,225)MistyRose1

FXRGB(238,213,210)MistyRose2

FXRGB(205,183,181)MistyRose3

FXRGB(139,125,123)MistyRose4

FXRGB(255,228,181)Moccasin

FXRGB(255,222,173)NavajoWhite

FXRGB(255,222,173)NavajoWhite1

FXRGB(238,207,161)NavajoWhite2

FXRGB(205,179,139)NavajoWhite3

FXRGB(139,121, 94)NavajoWhite4

FXRGB(0,0,128)Navy

FXRGB(0,0,128)NavyBlue

FXRGB(0,0,0,0)None

FXRGB(253,245,230)OldLace

FXRGB(107,142, 35)OliveDrab

FXRGB(192,255, 62)OliveDrab1

FXRGB(179,238, 58)OliveDrab2

FXRGB(154,205, 50)OliveDrab3

FXRGB(105,139, 34)OliveDrab4

FXRGB(255,165,0)Orange

FXRGB(255,165,0)Orange1

FXRGB(238,154,0)Orange2

Abaqus GUI Toolkit User's Guide266

Colors and RGB values

RGB valueString

FXRGB(205,133,0)Orange3

FXRGB(139, 90,0)Orange4

FXRGB(255, 69,0)OrangeRed

FXRGB(255, 69,0)OrangeRed1

FXRGB(238, 64,0)OrangeRed2

FXRGB(205, 55,0)OrangeRed3

FXRGB(139, 37,0)OrangeRed4

FXRGB(218,112,214)Orchid

FXRGB(255,131,250)Orchid1

FXRGB(238,122,233)Orchid2

FXRGB(205,105,201)Orchid3

FXRGB(139, 71,137)Orchid4

FXRGB(238,232,170)PaleGoldenrod

FXRGB(152,251,152)PaleGreen

FXRGB(154,255,154)PaleGreen1

FXRGB(144,238,144)PaleGreen2

FXRGB(124,205,124)PaleGreen3

FXRGB(84,139, 84)PaleGreen4

FXRGB(175,238,238)PaleTurquoise

FXRGB(187,255,255)PaleTurquoise1

FXRGB(174,238,238)PaleTurquoise2

FXRGB(150,205,205)PaleTurquoise3

FXRGB(102,139,139)PaleTurquoise4

FXRGB(219,112,147)PaleVioletRed

FXRGB(255,130,171)PaleVioletRed1

FXRGB(238,121,159)PaleVioletRed2

FXRGB(205,104,137)PaleVioletRed3

FXRGB(139, 71, 93)PaleVioletRed4

FXRGB(255,239,213)PapayaWhip

FXRGB(255,218,185)PeachPuff

FXRGB(255,218,185)PeachPuff1

FXRGB(238,203,173)PeachPuff2

FXRGB(205,175,149)PeachPuff3

FXRGB(139,119,101)PeachPuff4

FXRGB(205,133, 63)Peru

FXRGB(255,192,203)Pink

FXRGB(255,181,197)Pink1

FXRGB(238,169,184)Pink2

FXRGB(205,145,158)Pink3

267Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(139, 99,108)Pink4

FXRGB(221,160,221)Plum

FXRGB(255,187,255)Plum1

FXRGB(238,174,238)Plum2

FXRGB(205,150,205)Plum3

FXRGB(139,102,139)Plum4

FXRGB(176,224,230)PowderBlue

FXRGB(160, 32,240)Purple

FXRGB(155, 48,255)Purple1

FXRGB(145, 44,238)Purple2

FXRGB(125, 38,205)Purple3

FXRGB(85, 26,139)Purple4

FXRGB(255,0,0)Red

FXRGB(255,0,0)Red1

FXRGB(238,0,0)Red2

FXRGB(205,0,0)Red3

FXRGB(139,0,0)Red4

FXRGB(188,143,143)RosyBrown

FXRGB(255,193,193)RosyBrown1

FXRGB(238,180,180)RosyBrown2

FXRGB(205,155,155)RosyBrown3

FXRGB(139,105,105)RosyBrown4

FXRGB(65,105,225)RoyalBlue

FXRGB(72,118,255)RoyalBlue1

FXRGB(67,110,238)RoyalBlue2

FXRGB(58, 95,205)RoyalBlue3

FXRGB(39, 64,139)RoyalBlue4

FXRGB(139, 69, 19)SaddleBrown

FXRGB(250,128,114)Salmon

FXRGB(255,140,105)Salmon1

FXRGB(238,130, 98)Salmon2

FXRGB(205,112, 84)Salmon3

FXRGB(139, 76, 57)Salmon4

FXRGB(244,164, 96)SandyBrown

FXRGB(46,139, 87)SeaGreen

FXRGB(84,255,159)SeaGreen1

FXRGB(78,238,148)SeaGreen2

FXRGB(67,205,128)SeaGreen3

FXRGB(46,139, 87)SeaGreen4

Abaqus GUI Toolkit User's Guide268

Colors and RGB values

RGB valueString

FXRGB(255,245,238)Seashell

FXRGB(255,245,238)Seashell1

FXRGB(238,229,222)Seashell2

FXRGB(205,197,191)Seashell3

FXRGB(139,134,130)Seashell4

FXRGB(160, 82, 45)Sienna

FXRGB(255,130, 71)Sienna1

FXRGB(238,121, 66)Sienna2

FXRGB(205,104, 57)Sienna3

FXRGB(139, 71, 38)Sienna4

FXRGB(135,206,235)SkyBlue

FXRGB(135,206,255)SkyBlue1

FXRGB(126,192,238)SkyBlue2

FXRGB(108,166,205)SkyBlue3

FXRGB(74,112,139)SkyBlue4

FXRGB(106, 90,205)SlateBlue

FXRGB(131,111,255)SlateBlue1

FXRGB(122,103,238)SlateBlue2

FXRGB(105, 89,205)SlateBlue3

FXRGB(71, 60,139)SlateBlue4

FXRGB(112,128,144)SlateGray

FXRGB(198,226,255)SlateGray1

FXRGB(185,211,238)SlateGray2

FXRGB(159,182,205)SlateGray3

FXRGB(108,123,139)SlateGray4

FXRGB(112,128,144)SlateGrey

FXRGB(255,250,250)Snow

FXRGB(255,250,250)Snow1

FXRGB(238,233,233)Snow2

FXRGB(205,201,201)Snow3

FXRGB(139,137,137)Snow4

FXRGB(0,255,127)SpringGreen

FXRGB(0,255,127)SpringGreen1

FXRGB(0,238,118)SpringGreen2

FXRGB(0,205,102)SpringGreen3

FXRGB(0,139, 69)SpringGreen4

FXRGB(70,130,180)SteelBlue

FXRGB(99,184,255)SteelBlue1

FXRGB(92,172,238)SteelBlue2

269Abaqus GUI Toolkit User's Guide

Colors and RGB values

RGB valueString

FXRGB(79,148,205)SteelBlue3

FXRGB(54,100,139)SteelBlue4

FXRGB(210,180,140)Tan

FXRGB(255,165, 79)Tan1

FXRGB(238,154, 73)Tan2

FXRGB(205,133, 63)Tan3

FXRGB(139, 90, 43)Tan4

FXRGB(216,191,216)Thistle

FXRGB(255,225,255)Thistle1

FXRGB(238,210,238)Thistle2

FXRGB(205,181,205)Thistle3

FXRGB(139,123,139)Thistle4

FXRGB(255, 99, 71)Tomato

FXRGB(255, 99, 71)Tomato1

FXRGB(238, 92, 66)Tomato2

FXRGB(205, 79, 57)Tomato3

FXRGB(139, 54, 38)Tomato4

FXRGB(64,224,208)Turquoise

FXRGB(0,245,255)Turquoise1

FXRGB(0,229,238)Turquoise2

FXRGB(0,197,205)Turquoise3

FXRGB(0,134,139)Turquoise4

FXRGB(238,130,238)Violet

FXRGB(208, 32,144)VioletRed

FXRGB(255, 62,150)VioletRed1

FXRGB(238, 58,140)VioletRed2

FXRGB(205, 50,120)VioletRed3

FXRGB(139, 34, 82)VioletRed4

FXRGB(245,222,179)Wheat

FXRGB(255,231,186)Wheat1

FXRGB(238,216,174)Wheat2

FXRGB(205,186,150)Wheat3

FXRGB(139,126,102)Wheat4

FXRGB(255,255,255)White

FXRGB(245,245,245)WhiteSmoke

FXRGB(255,255,0)Yellow

FXRGB(255,255,0)Yellow1

FXRGB(238,238,0)Yellow2

FXRGB(205,205,0)Yellow3

Abaqus GUI Toolkit User's Guide270

Colors and RGB values

RGB valueString

FXRGB(139,139,0)Yellow4

FXRGB(154,205, 50)YellowGreen

271Abaqus GUI Toolkit User's Guide

Colors and RGB values

Layout hints

The layout managers in the Abaqus GUI Toolkit support the layout hints.

Supported layout hints follow:

EffectUsed inLayout hint

If you specify one of these four layout hints, the child widget will be
stuck to the top, bottom, left, or right, respectively, in the layout manager

FXPacker FXGroupBox
FXTopLevel

LAYOUT_SIDE_TOP (default)
LAYOUT_SIDE_BOTTOM
LAYOUT_SIDE_LEFT
LAYOUT_SIDE_RIGHT

cavity. The size of the cavity will be reduced by the amount lopped off
by the packed widget. LAYOUT_SIDE_TOP and
LAYOUT_SIDE_BOTTOM will reduce the height of the cavity.
LAYOUT_SIDE_LEFT and LAYOUT_SIDE_RIGHT will reduce the
width of the cavity. For other composite widgets, these hints may not
have any effect.

The widget will be placed on the left side or right side of the space
remaining in the container. When used for a child of FXPacker

AllLAYOUT_LEFT (default) LAYOUT_RIGHT
FXGroupBox, or FXTopLevel, the hint will be ignored unless either
LAYOUT_SIDE_TOP or LAYOUT_SIDE_BOTTOM is specified.

The widget will be placed on the top-side or bottom-side of the space
remaining in the container. For a child of FXPacker, etc., these options

All
LAYOUT_TOP (default)
LAYOUT_BOTTOM will only have effect if either LAYOUT_SIDE_RIGHT or

LAYOUT_SIDE_LEFT is specified.

The widget will be centered in the X-direction (or Y-direction) in the
parent. Extra spacing will be added around the widget to place it at the

All
LAYOUT_CENTER_X
LAYOUT_CENTER_Y

center of the space available to it. The size of the widget will be its default
size unless LAYOUT_FIX_WIDTH or LAYOUT_FIX_HEIGHT have
been specified.

Either none, one, or both of these hints may be specified.
LAYOUT_FILL_X will cause the parent layout manager to stretch or

AllLAYOUT_FILL_X LAYOUT_FILL_Y
shrink the widget to accommodate the available space. If more than one
child with this option is placed side by side, the available space will be
subdivided proportionally to their default size. LAYOUT_FILL_Y has
the identical effect on the vertical direction.

Either none, one, or both of these hints may be specified. The
LAYOUT_FIX_X hint will cause the parent layout manager to place

AllLAYOUT_FIX_X LAYOUT_FIX_Y
this widget at the indicated X-position, as passed on the optional
arguments in the widgets constructor argument list. Likewise, a
LAYOUT_FIX_Y hint will cause placement at the indicated Y-position.
The X- and Y-positions are specified in the parent's coordinate system.

If LAYOUT_FILL_COLUMN is specified for all child widgets in a
certain column of a matrix layout manager, the whole column can stretch

FXMatrix
LAYOUT_FILL_ROW
LAYOUT_FILL_COLUMN

if the matrix itself is stretched horizontally. Analogously, if
LAYOUT_FILL_ROW is specified for all child widgets in a certain row,
the whole row is stretched if the matrix layout manager is stretched
vertically.

These options will fix the widget's width (or height) to the value specified
on the constructor. You can change the size of the widget using its

All
LAYOUT_FIX_WIDTH
LAYOUT_FIX_HEIGHT

setWidth() and setHeight() methods; however, the layout manager will
generally observe the specified dimensions of the widget without trying
to modify it (unless other options override).

Either none, one, or both of these hints may be specified. You will almost
never specify these options, except perhaps for code legibility. If

All
LAYOUT_MIN_WIDTH (default)
LAYOUT_MIN_HEIGHT (default)

LAYOUT_FIX_WIDTH or LAYOUT_FIX_HEIGHT are not specified,
these options will cause the parent layout widget to use the default (or
minimum) width and height, respectively.

Abaqus GUI Toolkit User's Guide272

Layout hints

	Abaqus GUI Toolkit User's Guide
	Contents
	Trademarks and Legal Notices
	Abaqus GUI Toolkit User's Guide
	What's New
	Introduction
	What can I do with the Abaqus GUI Toolkit?
	Prerequisites for using the Abaqus GUI Toolkit
	Abaqus GUI Toolkit basics
	Organization of the Abaqus GUI Toolkit User's Guide

	Getting Started with the Abaqus GUI Toolkit
	The kernel and GUI
	What are the components of an Abaqus GUI application?
	Plug-ins and customized applications
	Running the prototype application

	Building Dialog Boxes
	Widgets
	Labels and buttons
	About labels and buttons
	Labels
	Push buttons
	Check buttons
	Radio buttons
	Menu buttons
	Popup menus
	Toolbar and toolbox buttons
	Flyout buttons
	Color buttons

	Text widgets
	Single line text field widget
	Multi-line text widget

	Lists and combo boxes
	Lists
	Combo boxes
	List boxes

	Range widgets
	Sliders
	Spinners

	Tree widgets
	Tree list
	Option tree list

	Table widget
	Table widget layout
	Table constructor
	Rows and columns
	Spanning
	Justification
	Editing
	Types
	List type
	Boolean type
	Icon type
	Color type
	Popup menu
	Colors
	Sorting

	Miscellaneous widgets
	Separators
	Notes and warnings
	Progress bar

	The create method
	Widgets and fonts

	Layout managers
	About layout managers
	Padding and spacing
	Horizontal and vertical frames
	Vertical alignment for composite children
	General-purpose layout managers
	Row and column layout manager
	Resizable regions
	Rotating regions
	Tab books
	Layout hints
	Layout examples
	Tips for specifying layout hints

	Dialog boxes
	About dialog boxes
	Modal versus modeless
	Showing and hiding dialog boxes
	Message dialog boxes
	Error dialog boxes
	Warning dialog boxes
	Information dialog boxes
	Specialized message dialog boxes

	Custom dialog boxes
	About custom dialog boxes
	Constructors
	Sizing and location
	Action area
	Custom action area button names
	Action button handling

	Data dialog boxes
	About data dialog boxes
	Constructors
	Bailout
	Constructor contents
	Transitions
	Updating your GUI
	Action area

	Common dialog boxes
	File/Directory selector
	Print dialog box
	Color selector dialog box

	Issuing Commands
	Commands
	An overview of commands
	The kernel and GUI processes
	Executing commands
	Kernel commands
	GUI commands
	Constructing GUI commands
	GUI commands and current objects
	Keeping the GUI and commands up-to-date
	Targets and messages
	Automatic GUI updating
	Data targets
	Option versus value mode
	AFXKeywords
	Expression evaluation
	Connecting keywords to widgets
	Boolean, integer, float, and string keyword examples
	Symbolic constant keyword examples
	Tuple keyword examples
	Table keyword example
	Object keyword example
	Defaults objects

	AFXTargets
	Accessing kernel data from the GUI
	Receiving notification of kernel data changes
	Automatically registering a query on kernel objects
	Manually registering a query on kernel objects
	Using registerQuery on kernelAccess proxy objects
	Recognizing when custom kernel data change

	Modes
	About modes
	Mode processing
	The mode processing sequence
	Activating a mode
	Step and dialog box processing
	Command processing
	Work in progress
	Command error handling

	Form modes
	Form example
	Form constructor
	getFirstDialog
	getNextDialog
	Collecting input from the GUI

	Procedure modes
	Procedure example
	Procedure constructor
	getFirstStep
	getNextStep
	getLoopStep
	AFXDialogStep

	Picking in procedure modes
	AFXPickStep
	Refining what the user can select
	Nonpickable entities
	Highlighting while selecting
	Selection options
	Allowing the user to type in points
	Picking by angle
	AFXOrderedPickStep
	Prepopulating a pick step
	Limitations while selecting

	GUI modules and toolsets
	Creating a GUI module
	Examining a GUI module example
	GUI module example
	Deriving a new module class
	Tree tabs
	Menu bar items
	Toolbar items
	Toolbox items
	Registering toolsets
	Kernel module initialization
	Instantiating the GUI module

	Registering a GUI module
	Switching to a GUI module

	Creating a GUI toolset
	GUI Toolset example
	Creating toolset components
	Registering toolsets

	Customizing an existing module or toolset
	Modifying and accessing Abaqus/CAE GUI modules and toolsets
	Abaqus/CAE GUI modules and toolsets
	Accessing Abaqus/CAE functions

	The File toolset
	The Tree toolset
	The Selection toolset
	The Help toolset
	An example of customizing a toolset

	Creating a customized application
	Creating an application
	About the GUI code
	Startup script
	Licensing and execution

	The application object
	The application object
	Common methods

	The main window
	About the main window
	The title bar
	The menu bar
	Toolbars
	The context bar
	The module toolbox
	The drawing area and canvas
	The prompt area
	The message area
	The command line interface

	Customizing the main window
	Modules and toolsets
	The Abaqus/CAE main window
	Main window example
	Importing modules
	Constructing the base class
	Registering persistent toolsets
	Registering modules

	Icons
	Colors and RGB values
	Layout hints

