

Moldflow translation examples

This example illustrates how you can effectively couple Moldflow and Abaqus.

The following features of the **abaqus moldflow** translator are demonstrated:

- transforming finite element model information from a Moldflow analysis into a partial Abaqus input file,
- adding appropriate data for the analysis,
- o performing natural frequency analyses, and
- calculating deformation due to initial stresses.

This page discusses:

- Application description
- Abagus modeling approaches and simulation techniques
- Case 1: Natural frequency analysis of a fiber-filled bracket
- Case 2: Natural frequency analysis of an unfilled bracket
- Case 3: Deformation due to initial stresses in a three-dimensional filled bracket
- Input files
- Tables
- Figures

Products: Abaqus/Standard

Application description

The results of a Moldflow simulation, which models the plastics injection mold-filling process, include calculations of material properties and residual stresses in the plastic part. Two types of parts, a filled bracket and an unfilled bracket, are studied in this example to illustrate how you can transform finite element model information from a Moldflow simulation into a partial Abaqus input file, adding boundary conditions and step data, and requesting output.

Abaqus modeling approaches and simulation techniques

This example illustrates the use of the **abaqus moldflow** translator.

Summary of analysis cases

Case	Natural frequency analysis of a fiber-filled bracket.
Case 2	Natural frequency analysis of an unfilled bracket.
Case 3	Deformation due to initial stresses in a three-dimensional filled bracket.

Run procedure

The three cases share the same general approach. The following procedure summarizes the typical usage of the **abaqus moldflow** translator:

- 1. Export the data from Moldflow simulation as follows:
- For a midplane Moldflow simulation, export the finite element mesh data to a file named job-name.pat and the results data (material properties and residual stresses) to a file named job-name.osp.
- For a three-dimensional solid Moldflow simulation using Moldflow Version MPI 6, run the Visual Basic script mpi2abq.vbs to export the finite element mesh data to a file named job-name mesh.inp and the results data to .xml files.
- 2. Run the **abaqus moldflow** translator to create a partial Abaqus input (.inp) file from the Moldflow interface files.
- 3. Edit the Abaqus input file to add appropriate data for the analysis (for example, add boundary conditions and step data).
- 4. Submit the Abagus input file for analysis.

Extracting the files

All files associated with these analyses are included with the Abaqus release; you can use the Abaqus **fetch** utility to extract example problem files from the compressed archive files.

To extract all the relevant files for a particular example problem, enter the following commands:

Case 1	abaqus fetch job=moldflow_ex1*
Case 2	abaqus fetch job=moldflow_ex2*
Case	abaqus fetch job=bracket3d_mpi6*

For information on using wildcard expressions with the Abaqus **fetch** utility, see <u>Fetching Sample</u> <u>Input Files</u>.

Case 1: Natural frequency analysis of a fiber-filled bracket

The bracket in Case 1 consists of 926 nodes and 1719 S3R elements. The model contains seven different element sets. Each element set has a different thickness and is modeled as a laminated composite with 20 layers.

Ten unrestrained vibration modes are computed. The first six frequencies are approximately zero. The frequencies for the first four flexible modes are listed in $\underline{\text{Table 1}}$.

The Abaqus finite element model is shown in Figure 1.

Case 2: Natural frequency analysis of an unfilled bracket

Case 2 uses the same Abaqus finite element model as Case 1, but the material properties are transversely isotropic. The shell section definition is homogeneous instead of composite. Twenty-one equally spaced Simpson integration points are used through the shell thickness.

The frequencies for the first four flexible vibration modes of the unfilled bracket are listed in <u>Table</u> <u>2</u>. The unfilled material in this example is softer than the filled material in Case 1; consequently, the frequencies are lower.

Case 3: Deformation due to initial stresses in a three-dimensional filled bracket

Case 3 uses a solid Abaqus finite element model that is similar to the model used in Case 1.

To execute the **abaqus moldflow** translator, enter the following command:

abaqus moldflow job=bracket3d mpi6 3D initial stress=on

A contour plot of initial stresses is shown in Figure 2.

Input files

Case 1

moldflow ex1.inp

Input file to analyze a fiber-filled bracket.

Case 2

moldflow ex2.inp

Input file to analyze an unfilled bracket.

Tables

Table 1. Frequencies for the first four flexible modes for the fiber-filled bracket.

Mode	Frequency, Hz
7	334

Mode	Frequency, Hz
8	430
9	740
10	752

Table 2. Frequencies for the first four flexible modes for the unfilled bracket.

Mode	Frequency, Hz
7	146
8	217
9	363
10	371

Figures

Figure 1. Finite element mesh of the fiber-filled bracket.

Figure 2. Contour plot of the initial stresses for the filled bracket using Moldflow Version MPI 6.

