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Buckling of an imperfection-sensitive cylindrical shell

This example shows how to perform a postbuckling analysis using Abaqus for an imperfection-sensitive structure. A
structure is imperfection sensitive if small changes in an imperfection change the buckling load significantly.
Qualitatively, this behavior is characteristic of structures with closely spaced eigenvalues. For such structures the
first eigenmode may not characterize the deformation that leads to the lowest buckling load. A cylindrical shell is
chosen as an example of an imperfection-sensitive structure.
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o Geometry and model
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o Results and discussion

o Input files
o References
o Tables

o Figures

Products: Abaqus/Standard

Geometry and model

The cylinder being analyzed is depicted in Figure 1. The cylinder is simply supported at its ends and is loaded by a
uniform, compressive axial load. A uniform internal pressure is also applied to the cylinder. The material in the
cylinder is assumed to be linear elastic. The thickness of the cylinder is 1/500 of its radius, so the structure can be
considered to be a thin shell.

The finite element mesh uses the fully integrated S4 shell element. This element is based on a finite membrane
strain formulation and is chosen to avoid hourglassing. A full-length model is used to account for both symmetric
and antisymmetric buckling modes. A fine mesh, based on the results of a refinement study of the linear
eigenvalue problem, is used. The convergence of the mesh density is based on the relative change of the
eigenvalues as the mesh is refined. The mesh must have several elements along each spatial deformation wave;
therefore, the level of mesh refinement depends on the modes with the highest wave number in the
circumferential and axial directions.

Solution procedure

The solution strategy is based on introducing a geometric imperfection in the cylinder. In this study the
imperfections are linear combinations of the eigenvectors of the linear buckling problem. If details of imperfections
caused in @ manufacturing process are known, it is normally more useful to use this information as the
imperfection. However, in many instances only the maximum magnitude of an imperfection is known. In such
cases assuming the imperfections are linear combinations of the eigenmodes is a reasonable way to estimate the
imperfect geometry (Arbocz, 1987).

Determining the most critical imperfection shape that leads to the lowest collapse load of an axially compressed
cylindrical shell is an open research issue. The procedure discussed in this example does not, therefore, claim to
compute the lowest collapse load. Rather, this example discusses one approach that can be used to study the
postbuckling response of an imperfection-sensitive structure.
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The first stage in the simulation is a linear eigenvalue buckling analysis. To prevent rigid body motion, a single
node is fixed in the axial direction. This constraint is in addition to the simply supported boundary conditions noted
earlier and will not introduce an overconstraint into the problem since the axial load is equilibrated on opposing
edges. The reaction force in the axial direction should be zero at this node.

The second stage involves introducing the imperfection into the structure using geometric imperfections. A single
mode or a combination of modes is used to construct the imperfection. To compare the results obtained with
different imperfections, the imperfection size must be fixed. The measure of the imperfection size used in this
problem is the out-of-roundness of the cylinder, which is computed as the radial distance from the axis of the
cylinder to the perturbed node minus the radius of the perfect structure. The scale factor associated with each
eigenmode used to seed the imperfection is computed with a Fortran program. The program reads the results file
produced by the linear analysis and determines the scale factors so that the out-of-roundness of the cylinder is
equal to a specified value. This value is taken as a fraction of the cylinder thickness.

The final stage of the analysis simulates the postbuckling response of the cylinder for a given imperfection. The
primary objective of the simulation is to determine the static buckling load. The modified Riks method is used to
obtain a solution since the problem under consideration is unstable. The Riks method can also be used to trace the
unstable and stable solution branches of a buckled structure. However, with imperfection-sensitive structures the
first buckling mode is usually catastrophic, so further continuation of the analysis is usually not undertaken. When
using a static Riks step, the tolerance used for the force residual convergence criteria may need to be tightened to
ensure that the solution algorithm does not retrace its original loading path once the limit point is reached. Simply
restricting the maximum arc length allowed in an increment is normally not sufficient.

Parametric study

There are two factors that significantly alter the buckling behavior: the shape of the imperfection and the size of
the imperfection. A convenient way to investigate the effects of these factors on the buckling response is to use
the parametric study capabilities of Abaqus. A Python script file is used to perform the study. The script executes
the linear analysis, runs the Fortran routine to create an input file with a specified imperfection size, and finally
executes the postbuckling analysis.

Before executing the script, copy the Fortran routine cylsh maximp.f to your work directory using the
Abaqgusfetch command,

abaqus fetch job=cylsh maximp.f
and compile it using the Abaqusmake command,
abaqus make job=cylsh maximp.f

Parametrized template input data are used to generate variations of the parametric study. The script allows the
analyst to vary the eigenmodes used to construct the imperfection, out-of-roundness measure, cylindrical shell
geometry (radius, length, thickness), mesh density, material properties (Young's modulus and Poisson's ratio), etc.
The results presented in the following section, however, are based on an analysis performed with a single set of
parameters.

Results and discussion

The results for both the linear eigenvalue buckling and postbuckling analyses are discussed below.

Linear eigenvalue buckling

The Lanczos eigensolver is used to extract the linear buckling modes. This solver is chosen because of its superior
accuracy and convergence rate relative to wavefront solvers for problems with closely spaced eigenvalues. Table 1
lists the first 19 eigenvalues of the cylindrical shell. The eigenvalues are closely spaced with a maximum
percentage difference of 1.3%.

The geometry, loading, and material properties of the cylindrical shell analyzed in this example are characterized
by their axisymmetry. As a consequence of this axisymmetry the eigenmodes associated with the linear buckling
problem will be either (1) axisymmetric modes associated with a single eigenvalue, including the possibility of
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eigenmodes that are axially symmetric but are twisted about the symmetry axis or (2) nonaxisymmetric modes
associated with repeated eigenvalues (Wohlever, 1999). The nonaxisymmetric modes are characterized by
sinusoidal variations (n-fold symmetry) about the circumference of the cylinder. For most practical engineering
problems and as illustrated in Table 1, it is usually found that a majority of the buckling modes of the cylindrical
shell are nonaxisymmetric.

The two orthogonal eigenmodes associated with each repeated eigenvalue span a two-dimensional space, and as a
result any linear combination of these eigenmodes is also an eigenmode; i.e., there is no preferred direction.
Therefore, while the shapes of the orthogonal eigenmodes extracted by the eigensolver will always be the same
and span the same two-dimensional space, the phase of the modes is not fixed and might vary from one analysis
to another. The lack of preferred directions has consequences with regard to any imperfection study based upon a
linear combination of nonaxisymmetric eigenmodes from two or more distinct eigenvalues. As the relative phases
of eigenmodes change, the shape of the resulting imperfection and, therefore, the postbuckling response, also
changes. To avoid this situation, postprocessing is performed after the linear buckling analysis on each of the
nonaxisymmetric eigenmode pairs to fix the phase of the eigenmodes before the imperfection studies are
performed. The basic procedure involves calculating a scaling factor for each of the eigenvectors corresponding to
a repeated eigenvalue so that their linear combination generates a maximum displacement of 1.0 along the global
X-axis. This procedure is completely arbitrary but ensures that the postbuckling response calculations are
repeatable.

For the sake of consistency the maximum radial displacement associated with a unique eigenmode is also scaled
to 1.0. These factors are further scaled to satisfy the out-of-roundness criterion mentioned earlier.

Postbuckling response

The modes used to seed the imperfection are taken from the first 19 eigenmodes obtained in the linear eigenvalue
buckling analysis. Different combinations are considered: all modes, unique eigenmodes, and pairs of repeated
eigenmodes. An imperfection size (i.e., out-of-roundness) of 0.5 times the shell thickness is used in all cases. The
first limit-point on the load-displacement curve is recorded as the buckling load. The results indicate that the
cylinder buckles at a much lower load than the value predicted by the linear analysis (i.e., the value predicted
using only the lowest eigenmode of the system). An imperfection based on mode 1 (a unique eigenmode) results
in a buckling load of about 90% of the predicted value. When the imperfection was seeded with a combination of
all modes (1-19), a buckling load of 33% of the predicted value was obtained. Table 2 lists the buckling loads
predicted by Abaqus (as a fraction of linear eigenvalue buckling load) when different modes are used to seed the
imperfection.

The smallest predicted buckling load in this study occurs when using modes 12 and 13 to seed the imperfection,
yet the results obtained when the imperfection is seeded using all 19 modes indicate that a larger buckling load
can be sustained. One possible explanation for this is that the solution strategy used in this study (discussed
earlier) involves using a fixed value for the out-of-roundness of the cylinder as a measure of the imperfection size.
Thus, when multiple modes are used to seed the imperfection, the overall effect of any given mode is less than it
would be if only that mode were used to seed the imperfection. The large number of closely spaced eigenvalues
and innumerable combinations of eigenmodes clearly demonstrates the difficulty of determining the collapse load
of structures such as the cylindrical shell. In practice, designing imperfection-sensitive structures against
catastrophic failure usually requires a combination of numerical and experimental results as well as practical
building experience.

The final deformed configuration shown in Figure 2 uses a displacement magnification factor of 5 and corresponds
to using all the modes to seed the imperfection. Even though the cylinder appears to be very short, it can in fact
be classified as a moderately long cylinder using the parameters presented in Chajes (1985). The cylinder exhibits
thin wall wrinkling; the initial buckling shape can be characterized as dimples appearing on the side of the cylinder.
The compression of the cylinder causes a radial expansion due to Poisson's effect; the radial constraint at the ends
of the cylinder causes localized bending to occur at the ends. This would cause the shell to fold into an accordion
shape. (Presumably this would be seen if self-contact was specified and the analysis was allowed to run further.
This is not a trivial task, however, and modifications to the solution controls would probably be required. Such a
simulation would be easier to perform with Abaqus/Explicit.) This deformed configuration is in accordance with the
perturbed reference geometry, shown in Figure 3. To visualize the imperfect geometry, an imperfection size of 5.0
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times the shell thickness (i.e., 10 times the value actually used in the analysis) was used to generate the
perturbed mesh shown in this figure. The deformed configuration in the postbuckling analysis depends on the
shape of the imperfection introduced into the structure. Seeding the structure with different combinations of
modes and imperfection sizes produces different deformed configurations and buckling loads. As the results vary
with the size and shape of the imperfection introduced into the structure, there is no solution to which the results

from Abaqus can be compared.

The load-displacement curve for the case when the first 19 modes are used to seed the imperfection is shown in
Figure 4. The figure shows the variation of the applied load (normalized with respect to the linear eigenvalue
buckling load) versus the axial displacement of an end node. The peak load that the cylinder can sustain is clearly

visible.
Input files

cylsh_buck.inp

Linear eigenvalue buckling problem.

cylsh_postbuck.inp

Postbuckling problem.

cylsh_maximp.f

Fortran program to compute the scaling factors for the imperfection size.

cylsh_script.psf

Python script to generate the parametrized input files.
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Tables

Table 1. Eigenvalue estimates for the first 19 modes of the cylinder with and without internal pressure (p,)

Eigenvalue
Mode number
pi=0
1 11723
2,3 11724
4,5 11728
6, 7 11734
8,9 11744
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Eigenvalue
Mode number

Di — 0 Pi = 1
10, 11 11757 11760
12, 13 11775 11779
14, 15 11798 11804
16, 17 11827 11835
18, 19 11864 11874

Table 2. Summary of predicted buckling loads for the cylinder with internal pressure (p; = 1).

Mode used to seed the imperfection Normalized buckling load
1 0.902
2,3 0.647
4,5 0.480
6,7 0.355
8,9 0.351
10, 11 0.340
12,13 0.306
14, 15 0.323
16, 17 0.411
18, 19 0.422
All modes (1-19) 0.325
Figures

Figure 1. Cylindrical shell with uniform axial loading.

Unifarm

axial pressure I"/f
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Figure 2. Final deformed configuration of the cylindrical shell (first 19 eigenmodes used to
seed the imperfection; displacement magnification factor of 5.0; normalized end load = 0.29).

Figure 3. Perturbed geometry of the cylindrical shell (imperfection factor = 5 x thickness for
illustration only; actual imperfection factor used = .5 x thickness).

Figure 4. Normalized applied load versus axial displacement at node 5040 (first 19 modes
used to seed the imperfection).
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